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1.1 Introduction

The edge connectivity of an undirected graph G is the minimum number of edges that must
be removed to disconnect G. For example, the edge connectivity of a tree is 1, and the
edge connectivity of a simple cycle is 2. Similarly, the vertex connectivity of a graph is the
minimum number of vertices that must be removed to disconnect it.

It is not hard to see why these concepts are fundamental and have applications to network
reliability and distributed computing. For instance, a graph could be used to model a
network such as the Internet where vertices correspond to routers and edges represent the
connections between them.

In distributed computing, one of the measures of complexity is the message complexity–
the number of messages that need to be exchanged in order to compute something in a
distributed manner. A key building block for these algorithms is the broadcast operation.
To broadcast, each vertex after receiving, or generating in the case of the vertex that wants
to broadcast, the message can send out copies of that message on every outgoing link, i.e.
flood the network. This is expensive, costing m messages. To make this operation efficient,
one can use a spanning tree and send the message out on every link of the tree. Since a
spanning tree has only n− 1 edges, the number of messages used is also n− 1. For a dense
graph, defined as m = Ω(n2), the savings are substantial.
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The problem with using a spanning tree is that it is too fragile: single vertex or edge
failure causes the broadcast to fail. Hence, we seek a subgraph with high connectivity that
has the fewest number of edges. Unfortunately, finding such a subgraph is NP-complete
for all connectivity values greater than 1 [GJ79]. Therefore, we turn to approximation
algorithms for this problem–the focus of this chapter.

Given the importance of the problem, it was extensively studied [Hoc97, NI02, Nag04].
It is not surprising that there exist many flavors of this basic problem and multitude of
solutions. For example, each of the following assumptions and different combinations of
them give rise to a number of variations: the presence or absence of directions/weights on
edges, same connectivity between every pair of vertices–known as the uniform connectivity
requirement–or possibly different connectivity values between vertex pairs, whether the
graphs under consideration are simple or multigraphs, and finally if the special structure
present for small constant values of connectivity, e.g. k = 1, 2, or 3, can be exploited to
design efficient algorithms.

The algorithms given in this chapter are limited for the most part to simple, undirected,
unweighted graphs with uniform connectivity requirements. Rest of the chapter is orga-
nized as follows. Section 1.2 defines some common graph-theoretic terms that are used in
this chapter; definitions that are specific to algorithms of this chapter are deferred to the
respective sections. As a warm up, we present a simple 2-approximation in Section 1.3.
Section 1.4 presents a different algorithm that also achieves the same factor, but runs in
linear-time. Next we show in Section 1.5 how to beat the factor of 2 for some specific values
of connectivity. Section 1.6 presents the most technical result of this chapter, culminating in
an algorithm that subsumes all the results from the previous sections. We end the chapter
with some concluding remarks in Section 1.7.

1.2 Definitions and Notation

For the most part, we use standard graph theory notation. Refer to [Die06] for definitions
not covered here. The vertex set and edge set of a graph G are denoted by V(G) and E(G),
respectively. The number of vertices and the number of edges are denoted by n and m
respectively. The degree of a vertex v in G is designated by δG(v).

We will only be dealing with undirected graphs. A path in a graph G = (V,E) is a
sequence of vertices v1, v2, ..., vp from V such that for all i, 1 ≤ i < p, (vi, vi+1) ∈ E. v1
and vp are called the end vertices. A cycle is a path that starts and ends at the same
vertex. A tree is a connected graph that does not have any cycles. The level of a vertex v
in a rooted tree with root r is the number of edges between the v and r. Thus, the root
is at level 0, its children are at level 1 etc. A forest is a collection of trees. For a graph
G = (V,E), a maximal spanning forest F = (V,EF ) is a subgraph such that EF has no
cycles. Furthermore, EF is maximal in the sense that EF ∪ e contains a cycle for all edges
e ∈ E −EF . The cycle created by the addition of a non-tree edge e to a maximal spanning
forest is called the fundamental cycle created by e. Notice that when G is connected, F is
a spanning tree and denoted by T depending on the context.

A simple path is a path in which if a vertex appears once, it cannot appear again. The
parent of a vertex v in a rooted tree T with root r is the vertex that immediately follows v
on the unique path from v to r in T . Two paths are internally disjoint if they share only
the end vertices.

A subgraph Gs = (Vs, Es) of a graph G = (V,E) is a graph whose vertex and edge sets
are subsets of that of G, i.e. Vs ⊆ V and Es ⊆ E, and if (x, y) ∈ Es, x ∈ Vs and y ∈ Vs.
A subgraph Gs = (Vs, Es) of G = (V,E) is said to be a spanning subgraph if Vs = V and
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Es ⊆ E, i.e. Gs has the same vertex set as G, but not necessarily the same edge set. If
Gi = (V,Ei) and Gj = (V,Ej) are spanning subgraphs of G = (V,E), then Gi + Gj is
shorthand for the spanning subgraph (V,Ei ∪ Ej). Similarly, if Gi = (V,Ei) is a spanning
subgraphs of G = (V,E), then G−Gi is refers to the spanning subgraph (V,E − Ei).

A connected component of an undirected graph is a subgraph C = (Vc, Ec) in which any
two vertices are connected to each other by paths, and which is connected to no additional
vertices in V − Vc.

Given k > 0, a connected graph G = (V,E) with at least k + 1 vertices is called k-edge
(respectively, k-vertex) connected if the deletion of any k − 1 edges (respectively, vertices)
leaves the graph connected. If a connected graph contains a single vertex whose removal
disconnects the graph, then that vertex is called an articulation point. A graph is called
biconnected if it has no articulation points.

By connectivity, we mean both vertex and edge connectivity. An edge e ∈ E in a k-
connected graph (V,E) is critical, if (V,E − {e}) is not k-connected. In a minimally k
connected graph, every edge is critical.

For a subset of vertices V ′ ⊆ V , the subgraph G′ induced by V ′ is (V ′, E′) where E′ =
{(x, y) ∈ E | x ∈ V ′ and y ∈ V ′}. Also, the neighborhood of V ′, denoted N(V ′), is the
subset of vertices {y | ∃(x, y) ∈ E such that x ∈ V ′ and y ∈ V − V ′}

For a connected graph G = (V,E), a subset Z ⊂ V is called a vertex cut if G − Z has
at least two connected components. The size of a vertex cut Z is defined by |Z|. We are
generally interested in minimum size vertex cuts.

A certificate for the k-connectivity of G is a subgraph (V,E′), E′ ⊆ E, that is k-connected
if G is k-connected. A certificate for k-connectivity is sparse if it has O(kn) edges. For
example, a spanning tree is a sparse certificate for 1-connectivity of a connected graph. In
our analysis of sparse certificate heuristics, we represent a k-connected subgraph of G that
has the optimum number of edges by G∗.

1.3 A Simple 2-Approximation

In this section, we show how to find sparse certificates that have no more than twice the
number of edges from the optimum. How do we know the optimum, given that the problem
we are tackling is NP-complete? We don’t. Instead, we bound the optimum from below
and compute the ratio of upper and lower bounds. Obviously, closer the lower and upper
bounds, the better the approximation ratio.

1.3.1 A Trivial Lower Bound

In order for a graph to be k-connected, notice that every vertex v must have degree at least
k. Otherwise, i.e. if there exists a v such that δ(v) < k, deleting the all edges incident on
v, we can disconnect v from the rest of the graph. Similarly, N({v}) constitutes a vertex
cut whose size is less than k. From this observation, we can conclude that in order for a
graph to be k-connected, each vertex must have degree at least k. In any graph, the sum of
the degrees of all the vertices is twice the number of edges, as every edge is counted twice,
once from each end. Therefore, in order for a graph to be k-connected, the sum of the
degrees should be at least kn. In other words, every k-connected graph must have at least
kn
2 edges. It is often referred to as the degree lower bound. This lower bound is sufficient

to get a factor 2 approximation for the algorithms presented in the rest of this section.
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1.3.2 Non-algorithmic Upper Bounds

Note that any minimally k-edge connected graph has at most k(n−k) edges [Bol04, Mad71,
Mad72]. This upper bound combined with the degree lower bound from Section 1.3.1
immediately yields a 2-approximation algorithm, as minimally k-edge connected graphs
can be found in polynomial time.

Recent algorithmic work, the subject of the rest of this chapter, gives alternate, easy and
efficient methods for finding a k-connected spanning subgraph whose size (i.e., number of
edges) is at most kn.

1.3.3 Edge Connectivity

Consider Algorithm 1 for finding edge certificates that operates iteratively. In the ith it-
eration, it computes a sparse certificate for i connectivity Gi. The desired k-connected
subgraph Gk is output at the end of the kth iteration.

Algorithm 1 Edge Certificate

Require: G = (V,E) and an integer k > 0
Ensure: A sparse certificate Gk = (V,Ek) for k edge connectivity
1: procedure EC(G,k)
2: G0 ← (V, ∅)
3: for i← 1, k do
4: Find a maximal spanning forest Fi in G−Gi−1
5: Gi ← Gi−1 + Fi

6: end for
7: return Gk

8: end procedure

The following theorem proves the correctness of Algorithm 1 Edge Certificate [Thu89].

THEOREM 1.1 If G is k-edge connected, then Gk is k-edge connected.

Proof: Denote the spanning forests found in the for loop of the algorithm by F1, F2, . . . , Fk.
Note that as k > 0 and G is connected, F1 is a spanning tree. Hence Gk is connected.
Assume for contradiction that Gk is not k-edge connected, but G is. Then, there must
exist a set of edges K fewer than k in number whose removal disconnects Gk, but does not
disconnect G. Let C1 and C2 be the two connected components of Gk −K. Since |K| < k,
by the Pigeonhole Principle, there must exist an Fi, 1 ≤ i ≤ k, such that Fi does not have
any edges in common with K. Let e be an edge in G that has one end in C1 and the other
in C2. Such an edge must exist as E − K is connected. Now, adding e to Fi would not
create a cycle, contradicting that each of the k spanning forests found line 4 of Algorithm
1 is maximal. 2

1.3.4 Vertex Connectivity

While Algorithm Edge Certificate is sufficient to find edge certificates, as shown in Figure 1,
it can fail for vertex certificates. This is because if a pair of vertices x and y, are connected
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in maximal spanning forests Fi and Fj by paths Pi and Pj respectively, where Fi and Fj

are some maximal spanning forests found in Algorithm 1, then all we can say is that Pi and
Pj are edge disjoint. But for vertex connectivity, we need these paths to be vertex disjoint.

Figure 1 Algorithm Edge Certificate may not work for vertex certificates

However, by finding a specific kind of spanning forests in line 4 of Algorithm Edge Cer-
tificate, we can make the same algorithm work for vertex certificates. For example, using
breadth-first spanning forests, one can show that the resulting sparse subgraph preserves
vertex connectivity. We show in the rest of this section that the full power of breadth-first
search is not even needed. A less restrictive form of search called scan-first search (SFS) is
sufficient. The algorithm presented in this section is due to Cheriyan, Kao, and Thurimella
[CKT93]. The earliest work that employed a similar notion is due to Doshi and Varman
[DV87] though their method is limited to biconnected graphs.

Algorithm 2 Scan-First Search

Require: A connected graph G = (V,E) and a root r ∈ V
Ensure: A spanning tree T = (V,ET ) where ET ⊆ E
1: procedure SFS(G,r)
2: Initialize all vertices of G as unmarked and unscanned
3: ET ← ∅
4: mark r
5: while there exist a marked, but unscanned vertex u do
6: for every unmarked neighbor v of u do
7: mark(v)
8: add (u, v) to ET

9: end for . u is now considered scanned
10: end while
11: return T = (V,ET )
12: end procedure

Starting from a given root r or an arbitrary root, breadth-first search (BFS) explores the
graph in systematic way satisfying two conditions:
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1. when a vertex is being explored, all its unvisited neighbors are marked visited
and added to a collection Q, and

2. the next vertex to be explored is taken from Q using the First-In-First-Out
(FIFO) order.

SFS is less restrictive than BFS. In SFS, we require only the first condition. In other
words, SFS chooses the next vertex to be scanned from Q, but not necessarily in the FIFO
order.

The spanning tree implied by a search, whether breadth-first or scan-first, is the one that
results from each vertex v, v 6= r, choosing the edge (v, u) where u is the vertex that was
responsible for marking v as visited. Such a tree is called BFS or SFS spanning tree as the
case may be. See Algorithm 2.

Therefore, every BFS spanning tree is an SFS spanning tree, but the converse need not
be true. The following property of BFS and SFS is noteworthy. The nontree edges with
respect to a BFS tree are all cross edges (i.e. no back edges) and if (x, y) is one such
nontree edge then |level(x) − level(y)| ≤ 1. The nontree edges with respect to an SFS
tree are also all cross edges, but the level difference can be arbitrary. The reason for the
absence of back edges is the first condition. If a non-tree edge (u, v), level(u) < level(v),
is present in a tree T , then while scanning u, its unvisited neighbor v was not added as a
child in T . Hence T does not satisfy the first condition and it cannot be an SFS tree. It
is also worth pointing out that not all spanning trees in which back edges are absent are
not necessarily SFS trees, as the first condition still needs to be satisfied, i.e when a vertex
is scanned all its unscanned neighbors must be added to the collection of vertices to be
scanned. Equivalently, if a vertex u of a scan-first tree T has a non-tree edge (u, v) incident
on it, then the tree edge (t, v) incident on v must be such that t appears before u in the
scan order that was used to construct T .

Here are some more examples that illustrate the difference between BFS and SFS spanning
trees. Consider a graph that is a simple cycle C on 7 vertices v0, v2, . . . , v6. Denote the edge
between vi, v(i+1) mod 7

as ei. Then, C −{e3} is the only BFS tree starting from vertex v0
whereas C − {e1}, C − {e2}, C − {e3}, C − {e4}, and C − {e5} are all valid SFS spanning
trees.

Since the only vertex marked initially is r and at the time scanning r all neighbors of r
get marked, the edges incident on r get added to the SFS spanning tree. Thus

Propostion 1.2 If r is the root of a scan-first search, the all edges incident on r are part
of the spanning tree resulting from that search.

We would like to prove the following theorem:

THEOREM 1.3 Let G be a k-vertex connected graph and Gk be F1 +F2 + . . .+Fk where
Fi is a scan-first spanning forest in G −Gi−1, 1 ≤ i ≤ k, where G0 = (V, ∅). Then, Gk is
k-vertex connected.

Before we present the proof, we propose the following fact which follows from the previous
proposition.

Propostion 1.4 If a vertex v is used as a root in Fi, then all edges incident on it are
selected by Gi.

We prove Theorem 1.3 along the same lines as Theorem 1.1, i.e. by contradiction, while
keeping in mind a key difference between edge and vertex connectivity: assuming the size
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of the separator minimal, removal of an edge separator always results in two connected
components. On the other hand, removal of a minimal vertex separator could result in more
than two components. Such separators are called shredders [CT99]. This characteristic of
vertex separators makes the proof considerably more technical. To keep the discussion
simple, we will only prove the theorem for k = 2 and refer the reader to [CKT93] for the
general case.
Proof of Theorem 1.3: Assume G is biconnected but G2 is not. Then there exists an
articulation point v in G2. However, as G is biconnected, G− {v} is connected. Therefore,
there exists an edge (x, y) ∈ E(G)−E(G2), such that x and y are in different components
in G2 − {v}.

If v is the root of F1, then by Proposition 1.2, all edges incident on v belong to F1. But,
since all paths between two vertices that belong to different components of G2 − {v} must
go through v, as v is an articulation point, there is no path between x and y in G − F1.
But, F2 is a maximal spanning forest in G− F1 to which we can add (x, y) and not create
a cycle, thus contradicting the maximality of F2.

If on the other hand v is the not root of F1, then let r be the root of F1 and let C1 be the
component that contains r in G2 − {v}. Pick any other component of G2 − {v} and call it
C2. Notice that G−{v} must contain an edge (x, y), from a vertex of C1 to a vertex C2, as
we assumed G to be biconnected. Without loss of generality, let x ∈ V (C1) and y ∈ V (C2).
We now show that adding (x, y) to F2 does not create a cycle contradicting that F2 is
maximal. Notice that the scan-first search corresponding to F1 starts in the component C1

at root r and scans v before it scans any vertex of C2. If the search does not proceed this
way, there would be a path from a vertex of C1 to a vertex in C2 that does not go through
v, contradicting our assumption that v is an articulation point in G2. When scanning v,
the spanning tree F1 selects all edges (v, w) such that w ∈ V (C2). In other words, there
is no path between x and y in G − F1, i.e. adding (x, y) to F2 does not create a cycle. A
contradiction. 2

1.3.5 Time Complexity

Algorithm Edge Certificate is very easy to implement, as formalized in the theorem below:

THEOREM 1.5 Given G and Gi−1, each maximal spanning forest Fi in G − Gi−1,
1 ≤ i ≤ k, where G0 = (V, ∅) can be found in linear time sequentially. Therefore, a sparse
certificate for k-edge connectivity Gk can be found in O(k(m+ n)) time.

Proof: Discard the edges of Gi−1 from G and run any standard spanning forest algorithm
[CLRS09]. Since finding a maximal spanning forest takes time linear in the size of the graph
[CLRS09], the theorem follows. 2

Algorithm Scan-First Search can be implemented to run in linear time, implying that a
sparse certificate of k-connectivity can be found in O(kn) time.

THEOREM 1.6 Given G and Gi−1, each maximal scan-first spanning forest Fi in G−
Gi−1, 1 ≤ i ≤ k, where G0 = (V, ∅) can be found in linear time sequentially. Therefore, a
sparse certificate for k-vertex connectivity Gk can be found in O(k(m+ n)) time.

Proof: Discard the edges of Gi−1 from G and run any linear-time breadth-first algorithm
[CLRS09]. Since every BFS spanning forest is an SFS spanning forest, the theorem follows.
2
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Figure 2 MA labeling example

Note that there are no efficient methods to execute BFS in parallel. Fortunately, scan-first
search lends itself to an efficient parallel implementation [CKT93]:

THEOREM 1.7 For graph G with m edges and n vertices, an SFS forest can be found
in O(log n) time using using C(n,m) processors on a CRCW PRAM, where C(n,m) is the
number of processors required to compute a spanning tree in each component in O(log n)
time.

Proof: One easy way to find an SFS tree T in parallel is to first find an arbitrary spanning
tree T ′ rooted at some vertex r and rearrange the edges so that it becomes an SFS tree.
First, label each vertex of T ′ with respect to preorder labeling. To obtain an SFS tree T
from T ′, make each v, v 6= r, choose one edge (v, u) where u is a neighbor of v with the
lowest preorder label. To see that T is indeed an SFS tree, treat the preorder labels as the
order in which the vertices are scanned in some scan-first search. In order for an order to
be a valid SFS order, when a vertex needs to be chosen to be scanned, it should be selected
from the neighborhood of the vertices already scanned. Hence preorder is a valid scan-first
order. With this interpretation, if a vertex v has a non-tree edge (v, w) incident on v in T ,
then the preorder label of the parent of w in T is less than that of v, consistent with the
meaning of scanning a vertex in that w should be attached to the first neighbor of w marks
it.

The complexity bound follows because the preorder numbers and the minimum labeled

neighbor can be found in O(log n) time using (n+m)
logn processors [J9́2]. The spanning tree

computation dominates the resource bounds as the processor bound is C(n,m) = Ω( (n+m)
logn )

for O(log n) parallel time. 2

1.4 A Linear-Time 2-Approximation

In this section, we present an algorithm that computes a sparse k-connected spanning
subgraph that is within a factor 2 from the optimal in a single scan of the graph. This
elegant algorithm is due to Nagamochi and Ibaraki [NI92].

We need a few definitions first. Let Vi denote {v1, v2, . . . , vi}. An ordering σ = (v1, v2, . . . , vn)
of vertices in G is called a maximum adjacency ordering (MA ordering, for short) if for all
i, 2 ≤ i < n, vi+1 is one of the vertices from N(Vi) that has the highest degree in the
subgraph induced by Vi ∪N(Vi).

An MA ordering can be found sequentially by starting with an arbitrary edge and des-
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Figure 3 Edge Partitions

ignating its ends points as v1 and v2, thus defining V2. Next, v3 is selected from N(V2)
based on the number connections to the vertices in V2. In general, Vi is extended to Vi+1

by adding vi+1 where vi+1 is any vertex from N(Vi) that has the maximum number edges
to the vertices in Vi. Figure 2 on the left illustrates MA labeling.

Next, we extend the MA labeling to edges. For each 2 ≤ i ≤ n, assume there are j edges
between {v1, v2, . . . , vi−1} and vi. Consider the neighbors of vi in Vi−1 in the increasing
order of σ labeling and assign labels ei,1, ei,2, . . . , ei,j . Figure 2 on the right shows an
example edge labeling. For instance in Figure 2, the vertex labeled 4 has two edges to
V3 = {v1, v2, v3}, to v2 and v3. Edge labeling would label (v4, v2) and (v4, v3) as e4,1 and
e4,2 respectively.

Edge labeling defines a partition on E. We could use the second component of the
subscript of an edge label as the partition number. Specifically, define a partition of E to
be (F1, F2 . . . , Fn) where Fi = {e2,i, e3,i, . . . , en,i} for i = 1, 2, . . . , n

Note that some partitions Fi may be empty. See Figure 3 for an example. As before, define
Gi to be F1 + F2 + · · ·+ Fi for 1 ≤ i ≤ n.

THEOREM 1.8 Each (V, Fi), 1 ≤ i ≤ n, is a maximal scan-first spanning forest in
G−Gi−1.

Proof: For every vertex v, there can be at most one edge ev,i present in Fi. Furthermore,
there must be a unique vertex in every connected component C of Fi that does not have
such an edge–the vertex with the smallest σ number in that component. Assume that there
are nc vertices in C. As every vertex v, with the exception of one, has a unique ev,i incident
on it, C has nc − 1 edges. Since any connected graph with nc vertices and nc − 1 edges is
necessarily a tree, Fi is a spanning forest.

It remains to show that Fi is a scan-first spanning forest. The proof is similar to that
of Theorem 1.7. Notice that the σ order is a valid scan-first order. This is because in
SFS, starting from an arbitrary vertex, the next vertex to be scanned is chosen from the
neighborhood of the vertices that have already been scanned and all its unmarked neighbors
are marked. Interpreting the σ labeling as the scan-first order in G−Gi−1, the tree implied
in each component of G−Gi−1 is an SFS tree. Therefore, Fi is a maximal scan-first spanning
forest in G−Gi−1. 2

Combining Theorem 1.3 with the theorem above, we have

Corollary 1.9 For any k, F1 + F2 + · · ·+ Fk is a sparse certificate for k-connectivity.
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1.4.1 Time Complexity

It turns out that MA labeling and the corresponding edge labeling can be computed in
almost linear time, specifically in O(m + n log n) time [Nag04]. Note that this bound is
independent of k.

THEOREM 1.10 For graph G with m edges and n vertices, MA labeling can be computed
in O(m+ n log n) time.

Proof: We will sketch an algorithm and allude to its implementation using Fibonacci heaps.
(See Chapter 19 from [CLRS09] for a detailed description of Fibonacci heaps.) The al-
gorithm, starting from an arbitrary vertex, scans one vertex at a time until all n ver-
tices are processed. Assume inductively i vertices have been processed and an integer
d(v), 0 ≤ d(v) ≤ n − 1, is associated with each of the n − i unprocessed vertices v. The
integer d(v) represents the number of v’s processed neighbors. The next vertex to be pro-
cessed, (i+ 1)th vertex, is picked from one of the unprocessed vertices that has a maximum
d value. Say, x is one such vertex. Processing vertex x entails incrementing the d value
for all unprocessed neighbors of x and designating x as processed. Increment operation
is performed once for each edge. Moving a vertex from unprocessed to processed involves
using the delete max operation. This is done at most n− 1 times. Using Fibonacci heaps
increment key can be performed in O(1) amortized time and delete max takes O(log n)
time. From these observations, the theorem follows. 2

The above algorithm, while efficient, is inherently sequential as it processes one vertex
at a time. However, Algorithm Scan-First Search lends itself to an efficient parallel imple-
mentation as proved in Theorem 1.7.

1.5 Beating 2 For the Edge Case

Khuller and Vishkin gave the first approximation algorithm for the special case of k = 2
with a performance ratio less than 2 [KV94]. Their algorithm is based on depth-first search
and has a performance guarantee of 3

2 . A simple generalization of their algorithm has
a performance guarantee of 2 − 1

k for all k. Unfortunately, for higher values of k, this
expression approaches 2.

In this section we provide a different algorithm due to Khuller and Raghavachari [KR96].
This is the first algorithm that achieves an approximation factor 1.85 for all values of k, for
unweighted k-edge connectivity. For smaller values of k, their bounds are actually better:
1.66, 1.75, and 1.733 for k = 3, 4, and 5 respectively. The structure of this algorithm is
similar to the one shown in the previous sections where the connectivity of the solution is
increased incrementally in stages.

1.5.1 KR Algorithm

For the sake of clarity, we assume that k is even; if k is odd, first find a sparse (k − 1)-
connected spanning subgraph Gk−1 by using the algorithm given in this section and add to
it a maximal depth-first search (DFS) spanning forest Fi from G−Gk−1, thus obtaining a
k-edge connected spanning subgraph Gk of G. Proofs from this section can be used for the
odd case with minor modifications.

We use the following notation throughout this section:

Definition 1.5.1 Let e be an edge in a DFS spanning forest F2i+1 with x and y as its ends
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Algorithm 3 KR Edge Certificate

Require: G = (V,E) and an even integer k > 0
Ensure: A sparse certificate Gk = (V,Ek) for k edge connectivity
1: procedure KR(G,k)
2: G0 ← (V, ∅)
3: for i← 0, k2 − 1 do
4: Find a maximal DFS forest F2i+1 in G−G2i with arbitrary root(s)
5: G2i+1 ← G2i + F2i+1

6: Post-order label each edge of F2i+1

7: Build a forest F2i+2 as follows. Process each edge e = (x, y), level(x) < level(y),
8: of F2i+1 in post-order and add be (see Definition 1.5.3) to F2i+2 if the number
9: of edge-disjoint paths between x and y in G2i+1 + F2i+2 is less than 2i+ 2.

10: (Note that the edge (x, y) constitutes a path by itself.)
11: G2i+2 ← G2i+1 + F2i+2

12: end for
13: return Gk

14: end procedure

points. We will assume that x is the parent of y in F2i+1.

Definition 1.5.2 Let e be a critical edge in G2i+1, i.e. G2i+1 is 2i+ 1 edge connected but
G2i+1 − {e} is not, and let K be a cut of size 2i in G2i+1 − {e}. Since G is connected,
G2i+1 is connected for all i as it contains F1 which is a spanning tree of G. Denote the two
connected components that result when K ∪ {e} is deleted from G2i+1 by C1 and C2 where
x ∈ C1 and y ∈ C2.

Figure 4 Illustration of Definition 1.5.2

See Figure 4 for an illustration of this definition.
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Definition 1.5.3 With every critical edge e ∈ F2i+1, associate a back edge be ∈ G−G2i+1

that satisfies two properties:

• the fundamental cycle Ce created by be in F2i+1 contains e, and

• of all fundamental cycles that contain e, Ce contains a vertex v with a smallest
level(v) value.

1 2 2i
e

C1

C2

Cut K

x

y

Be

be

F2i+1
root  

highest reaching
 back edge 

Fundamental Cycle 
in F2i+1 containing e G

Figure 5: Illustration of Definitions 1.5.3 and 1.5.4

Definition 1.5.4 Denote the set of edges that connect a vertex in C1 to a vertex in C2,
excluding K ∪ {e}, by Be.

In the following lemma, assume that G2i is a 2i connected spanning subgraph of a k-
connected graph G, for k > (2i + 1) and i ≥ 0. Let G2i+1 = G2i + F2i+1 where F2i+1 is a
maximal DFS spanning search forest in G−G2i.

LEMMA 1.1 If G2i+1 has an edge cut K ′ of size 2i+ 1, then there is exactly one edge e
from F2i+1 in the cut, i.e. K ′ ∩ E(F2i+1) = {e}.

Proof: We first show that K ′ must contain at least one edge from F2i+1. Consider the two
connected components C1 and C2 that result when K ′ is deleted from G2k+1. Since G is
k connected for some k > (2i + 1), there exists an edge (a, b) in G − G2i+1 that connects
a vertex from C1 to a vertex in C2. Since F2i+1 is maximal, every edge in G − G2i+1,
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including (a, b), creates a cycle when added to F2i+1. Let the path between a and b in F2i+1

be P . The path P cannot survive when the cut K ′ is deleted from G2i+1, for otherwise C1

would be connected to C2 by P in G2i+1 −K ′. Therefore, K ′ should contain at least one
edge from F2i+1. Denote K ′ as K ∪ {e} where e ∈ F2i+1. To finish the proof, notice that
K cannot contain any edges from F2i+1, as it would mean that G2i contains a cut smaller
than 2i. 2

Corollary 1.11 Let e, e ∈ F2i+1, be a critical edge G2i+1 that belongs to a cut K of size
2i+ 1. Then, the edge be associated with each critical edge e = (x, y) goes between a vertex
from the subtree rooted at y, i.e. a descendant of y, and a vertex that is on the path from x
to the root of F2i+1, i.e. an ancestor of x.

Proof: From the maximality of F2i+1, we know that every edge from G−G2i+1, including
be, creates a cycle in F2i+1. As F2i+1 is a DFS spanning forest, all such edges are back edges.
From the previous lemma, we know that there is only one forest edge in K. Therefore, all
edges from G−G2i+1 that go between C2 and C1 are back edges that connect a descendant
of y to an ancestor of x. 2

THEOREM 1.12 Let G be a graph which is at least k-edge connected for some k > 0.
Then, Algorithm KR Edge Certificate with input G outputs a subgraph Gk of G that is
k-edge connected.

Proof: We prove this by induction on k. The theorem clearly holds for k = 1. Assume it
holds for all values j, j < k. We will show that it holds for j + 1 as well. If j is even, then
Fj+1 is a maximal spanning forest in G−Gj . In this case, the fact that Gj + Fj+1 is j + 1
connected can be proved in a manner similar to the proof of Theorem 1.1.

Next consider the case when j is odd. Let j = 2x + 1 for some x. Then, F2x+2 is the
set of back edges be for each critical edge e added in lines 7-9. We claim that every edge
cut K in Gj + F2x+2 is of size at least 2x + 2. Note that the presence of a cut of size less
than 2x+ 1 would violate the inductive hypothesis. If a cut K of size 2x+ 1 were to exist,
one of the cut edges, say e, must come from F2x+1 by Lemma 1.1. This edge e would be a
critical edge in Gj as it is part of a j cut. Therefore, the algorithm would add be to F2x+2

and make e non-critical. Hence no such cut K can exist in Gj + F2x+2. 2

1.5.2 Approximation Guarantee

Let be be a back edge added in lines 7-9 to F2i+2 corresponding to the critical edge e in
G2i+1 and recall that Be (see Definition 1.5.4) is the set of back edges whose fundamental
cycles that contain e.
Remark: It is important to note that F2i+2 changes as back edges associated critical edges
are added and it is this updated F2i+2 that is used when the criticality of a tree edge is
checked in G2i+1 + F2i+1 in lines 8-9.

Let d be another tree edge detected to be critical in the post-order corresponding to which
bd is added from the set of edges Bd whose fundamental cycles contains d. Then,

LEMMA 1.2 Bd ∩Be = ∅.

Proof: Assume without loss of generality that e comes before d in the post-order traversal.
Let d = (s, t) and e = (x, y). Then, by Corollary 1.11 the edges of Bd (resp. Be) are all
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back edges and have one end point in the subtree rooted at t (resp. y). Therefore, if d is
not an ancestor of e, the lemma follows immediately. Let us now consider the case when
d is an ancestor of e. Assume, for contradiction, that there is an edge f that is in both
Bd and Be. Note that adding f to G2i+1 makes both d and e non-critical. But, when e is
processed in lines 7-9, either f is added or another edge whose span includes the span of f
is added, rendering d non-critical, contradicting the assumption that d was critical at the
time it was examined in the updated G2i+1. 2

Recall that G∗ denotes a subgraph of G with the optimum number of edges. The following
lower bound is crucial for our analysis:

LEMMA 1.3 For any phase i, 0 ≤ i < k
2 , |G∗| ≥ (k − 2i)|F2i+2|.

Proof: At the beginning of phase i, G2i is 2i connected. By the end of the iteration, the
algorithm increases the connectivity by 2 and outputs G2i+2. Corresponding to every edge
be ∈ F2i+2, there exists a critical edge e in G2i+1 that is part of a 2i+ 1 cut K ∪ {e}. Since
G∗ is k-connected, every cut is of size at least k. As Be ∪K ∪ {e} is a cut that disconnects
C1 from C2, |Be ∪K ∪ {e}| ≥ k (see Definition 1.5.2 for the definition of C1 and C2). That
is, |Be ∪ {e}| ≥ k − 2i. Furthermore, corresponding to every edge be of F2i+2 there is an
edge e, e ∈ F2i+1, and a set of back edges Be, Be ⊆ G − G2i+1. By Lemma 1.2, the sets
corresponding two distinct edges from F2i+2 do not intersect with each other. Therefore
G∗ must contain at least (k − 2i)|F2i+2| edges. 2

Using the bounds from the previous lemma, we can finally establish

THEOREM 1.13 The ratio of the number of edges of Gk output by Algorithm KR Edge

Certificate to that of G∗ is at most (3+ln 2)
2 .

Proof: As in the algorithm, we restrict our attention to even k; minor adaptation of the
proof is required for the odd case. Note that since F2i+1 is a forest, it has at most n edges.
This holds F2i+2 as well. Also, from the degree lower bound given Section 1.3.1, we know
that |G∗| ≥ kn

2 . Thus,

k/2−1∑
i=0

(|F2i+1|+ |F2i+2|)
|G∗|

≤
Σ

k/2−1
i=0 |F2i+1|+ Σ

(k/4−1)
i=0 |F2i+2|+ Σ

(k/2−1)
i=k/4 |F2i+2|

max{kn/2,maxi{(k − 2i)|F2i+2|}}

≤ 3kn/4 + Σ
(k/4−1)
i=0 |F2i+2|

max{kn/2,maxi{(k − 2i)|F2i+2|}}

≤ 3kn/4

kn/2ll
+

Σ
(k/4−1)
i=0 |F2i+2|

maxi{(k − 2i)|F2i+2|}

≤ 3

2
+

1

2

(k/4−1)∑
i=0

1

(k/2− i)
(1.1)

Using variable substitution we can rewrite the second term as

=
3

2
+

1

2

k/2∑
x=k/4+1

1

x
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Since 1
x is a monotonically decreasing function, we can upper bound the sum using an

integral (see Appendix A.2 from [CLRS09]) by reducing the bottom limit by 1:

≤ 3

2
+

1

2

∫ k/2

x=k/4

1

x
=

3

2
+

1

2
(ln(

x

2
)− ln(

x

4
))

=
3

2
+

ln 2

2
< 1.85

2

As mentioned before this analysis assumes that k is even. By substituting k = 4 in (1.1),
one can see that the bound is actually 1.75, which is somewhat better than 1.85. By a
different analysis, it can be shown when k is 3 and 5, the approximation factors are 1.66
and 1.733 respectively, again better than 1.85.

1.5.3 Time Complexity

It turns out that analyzing the running time of KR Edge Certificate is rather easy. There are
k
2 iterations of the for loop. In each loop, we find a DFS spanning forest which takes linear
time [CLRS09]. Similarly, post-order labeling can be performed in linear time [CLRS09].
Rest of the loop involves checking whether a given edge e is critical and finding be if it
is determined that e is indeed critical. Karzanov and Timofeev show that in O(n2i) time
we can find all mincuts of an i-connected graph [KT86]. Furthermore, they also show how
to store all mincuts using a compact tree-like representation. Given this representation,
it is easy to check whether there exists a cut of size less than 2i + 2 between x and y in
G2i+1+F2i+2 in constant time. This will reveal whether e is critical. If it is, we can perform
a DFS of the tree T containing the edge e in linear time and see which back edge be from
the subtree rooted at y comes closest to the root of T . Therefore, the dominant step is
the construction of the cut representation of Karzanov-Timofeev which takes O(n2i) time.
Summing this over k

2 iterations, we get a time bound of O(k2n2). Note that as back edges
be are added, the cut in which be participates definitely gets destroyed. Also some other
(2i+1)-cuts might get destroyed by the addition of be. One assumption that is made in
[KR96], though not explicitly stated, is that the Karzanov-Timofeev cut representation can
be updated in linear time under edge additions.

1.6 Approximating Minimum-Size Spanning Subgraphs via
Matching

We conclude this chapter with the best known algorithm for finding minimum-size k-
connected spanning subgraphs. The algorithm presented in this section is extremely simple
and for the vertex connectivity case, it meets or beats all other algorithms for all values
of k. For undirected edge connectivity, it matches or improves the known bounds for val-
ues of k ≥ 3. In particular, the algorithm presented in this section, due to Cheriyan and
Thurimella [CT99], finds a k-vertex connected spanning subgraph of k-vertex connected
graph, directed or otherwise, whose size is at most 1 + 1

k times the optimal. For edge con-
nectivity, the approximation factors are 1 + 2

(k+1) and 1 + 4√
k

for undirected and directed

graphs respectively.
For clarity of exposition, we limit our discussion to the undirected, vertex case. Before we

present the algorithm, the following background is required on generalized matching. Given
a graph G = (V,E), a matching M , M ⊆ E, is set of pairwise non-adjacent edges, i.e. no
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two edges share a common vertex. A maximum matching is a matching M that contains
the largest number of edges. Notice that in any matching M , the degree of any vertex v is
at most 1. The maximum matching can be generalized wherein the degree of each vertex is
at most d. Additionally, the degree requirement can be made non-uniform, i.e. each vertex
v can have its own degree constraint ranging from 1 to δ(v). This generalization is known
as the b-matching problem.

A b-matching M of G = (V,E) is really a subgraph with most number edges satisfying
certain degree requirements. In particular, we are interested in a b-matching M where
δM (v) ≤ δG(v)− (k−1). Denote E−M by M̃ . Then (V, M̃) is another subgraph of G with

the least number edges wherein δ
M̃

(v) ≥ (k − 1) for each v. Denote this subgraph by M̃ .

Algorithm 4 CT Vertex Certificate

Require: An integer k > 0 and k-vertex connected graph G = (V,E)
Ensure: A sparse certificate Gk = (V,Ek) for k vertex connectivity
1: procedure CT(G,k)

2: Find M̃ , a smallest subgraph of G where δ(v) ≥ (k − 1) for each v ∈ G
3: F ← ∅
4: for each edge e = (u, v) in G− M̃ do

5: if (no. of vertex disjoint paths between u and v, including uv, in M̃ +F is ≤ k)
6: then F ← F ∪ {e}
7: end for
8: return Gk = M̃ + F
9: end procedure

Let us now analyze the algorithm above to see how many edges Gk contains in relation
to the best possible G∗. We first show that |F | < (n− 1), a fact that follows easily from a
theorem of Mader [Mad71, Mad72, Theorem 1]. (For an English translation of the proof of
Mader’s theorem see Lemma I.4.4 and Theorem I.4.5 in [Bol04].)

degree
    k 1 2

3k

critical edges
Figure 6: Illustration of Mader’s Theorem
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THEOREM 1.14 (Mader [Mad72, Theorem 1]) In a k-vertex connected graph, a
cycle consisting of critical edges must be incident to at least one vertex of degree k.

LEMMA 1.4 |F | ≤ (n− 1)

Proof: We claim that F cannot have any cycles. Assume otherwise. Since all edges of F
are critical in M̃ + F , from Mader’s theorem we know that this cycle must have a vertex
v such that δ

M̃+F
(v) = k. See Figure 6. Equivalently, δ

M̃
(v) < (k − 1), contradicting that

M̃ is a subgraph of G in which every vertex has degree at least (k − 1). 2

We now establish the performance guarantee.

THEOREM 1.15
|M̃+F |
|G∗| < 1 + 2

k

Proof: From the degree lower bound given in Section 1.3.1, we know that |G∗| ≥ kn
2 .

Therefore
|M̃ + F |
|G∗|

≤ |M̃ |
|G∗|

+
n− 1

(kn/2)
<
|M̃ |
|G∗|

+
2

k

Since G∗ is a subgraph in which every vertex v has δ(v) ≥ k, any subgraph of G that
has the smallest number edges in which δ(v) ≥ (k − 1) will have no more than |G∗| edges.
Therefore, the first term is at most 1, thus establishing the theorem. 2

CT Algorithm performs significantly better and can be shown to have to an approximation
ratio of 1 + 1

k as mentioned at the beginning of this section. To show this improved bound,
notice that there is some slack in our analysis in the proof of our theorem where we argue
that the first term is at most 1, i.e. when we compare the degrees of vertices in G∗ to those
in M̃ .

It turns out that |M̃ | ≤ |G∗| − n
2 . Using this fact in conjunction with Lemma 1.4, we see

that |M̃ + F | < |G∗|+ n
2 which implies an approximation ratio of 1 + 1

k .

The fact |M̃ | ≤ |G∗|− n
2 follows quite easily when G∗ has a perfect matching M , because

in that case G∗−M would be a subgraph in which every vertex v has δ(v) ≥ k−1. Proof of
this fact is considerably technical when G∗ does not have a perfect matching and is omitted
here.

1.6.1 Time Complexity

Finding M̃ is the same as finding a b-factor and removing the edges found, leaving a sub-
graph in which every vertex v satisfies δ(v) ≥ k − 1. Gabow and Tarjan [GT91] give a
O(m1.5 log2 n) algorithm for finding a b-factor.

To find a set of critical edges F whose addition to M̃ would yield a k-connected subgraph,
examine each edge e = (u, v) of G − M̃ in an arbitrary order (line 4). To see whether the
if condition is satisfied in line 5, attempt to find k + 1 internally disjoint (vertex or edge
as the case may be) paths between u and v. Each path can be found in linear time by an
augmenting path algorithm [CLRS09]. Therefore each iteration of the for loop takes km

time for a total of km2 time. At termination, the subgraph M̃ + F is k-vertex connected,
and every edge e ∈ F is critical.

The running time of finding F can be improved to O(k3n2) by first executing a linear-
time preprocessing step to compute a sparse certificate of G for k-vertex connectivity and
using that sparse certificate find k disjoint paths.
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1.7 Conclusion

Approximation algorithms for graph connectivity are surprisingly elegant and have many
useful applications. In this chapter, we have presented heuristics for finding k-connected
spanning subgraphs of k-connected graphs. These polynomial-time heuristics are reasonably
efficient and have provable performance guarantees. In some cases the approximation ratios
come very close to the optimal. For example, the algorithm presented in the last section is
provably within 5% from the optimal, i.e. < 1.05 ∗ OPT , if one is interested in finding a
k-vertex connected subgraph of a k-vertex connected graph for k = 20.
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