Friday Week 1 - Solutions Calculus III

Above is a graph of a cardioid, parametrized by

$$x(t) = (1 - \cos t) \cos t$$
$$y(t) = (1 - \cos t) \sin t$$
$$0 \le t \le 2\pi$$

(a) Use the graph to determine when x(t) is increasing/decreasing, and when y(t) positive/negative.

$$x(t)$$
 increasing: $\left[0, \frac{\pi}{3}\right] \cup \left[\pi, \frac{5\pi}{2}\right]$ $y(t) \geq 0$: $\left[0, \pi\right]$ $x(t)$ decreasing: $\left[\frac{\pi}{3}, \pi\right] \cup \left[\frac{5\pi}{3}, 2\pi\right]$ $y(t) \leq 0$: $\left[\pi, 2\pi\right]$

(b) Give an expression for the area enclosed by the cardioid (but do not integrate). You may make use of symmetry.

$$x(t)=\cos t-\cos^2 t$$
, and $x'(t)=-\sin t+2\sin t\cos t$. From (a) we have
$$[0,\frac{\pi}{3}]:\ x(t)\ \text{is inc. and}\ y(t)\geq 0 \qquad \qquad [\pi,\frac{5\pi}{3}]:\ x(t)\ \text{is inc. and}\ y(t)\leq 0$$

$$[\frac{\pi}{3},\pi]:\ x(t)\ \text{is dec. and}\ y(t)\geq 0 \qquad \qquad [\frac{5\pi}{3},2\pi]:\ x(t)\ \text{is dec. and}\ y(t)\leq 0$$

So the area enclosed by the cardioid is

$$\int_{0}^{\frac{\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$+ \int_{\pi}^{\frac{\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$- \int_{\pi}^{\frac{5\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$- \int_{2\pi}^{\frac{5\pi}{2}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$= \int_0^{\frac{\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$- \int_{\frac{\pi}{3}}^{\pi} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$- \int_{\pi}^{\frac{5\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$+ \int_{\frac{5\pi}{3}}^{2\pi} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt.$$

Or, using symmetry, on $[0,\pi]$ the area enclosed by the curve and the x-axis is

$$\int_0^{\frac{\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$+ \int_{\pi}^{\frac{\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$= \int_0^{\frac{\pi}{3}} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

$$- \int_{\frac{\pi}{3}}^{\pi} (1 - \cos t) \sin t (-\sin t + 2\sin t \cos t) dt$$

So the total area is

$$2\left[\int_0^{\frac{\pi}{3}} (1-\cos t)\sin t(-\sin t + 2\sin t\cos t) dt - \int_{\frac{\pi}{3}}^{\pi} (1-\cos t)\sin t(-\sin t + 2\sin t\cos t) dt\right].$$

Consider the parametric curve

$$x(t) = t^3 - 4t$$
$$y(t) = t^2$$
$$0 \le t \le 2$$

(a) Without graphing, determine when x(t) is increasing/decreasing, and when y(t) is positive/negative.

We'll use the first derivative test to determine when x(t) is increasing or decreasing.

$$x'(t) = 0 \iff 3t^2 - 4 = 0 \iff t = \pm \frac{2\sqrt{3}}{3}$$

Only $t = \frac{2\sqrt{3}}{3}$ is in the interval [0,2], so using test points t = 0 and t = 2 we have

$$x'(0) = -4 \le 0 \implies x(t)$$
 is decreasing on $[0, \frac{2\sqrt{3}}{3}]$

$$x'(2) = 8 \ge 0 \implies x(t)$$
 is increasing on $\left[\frac{2\sqrt{3}}{3}, 2\right]$

Since $y(t) = t^2$ then $y(t) \ge 0$ on [0, 2].

(b) Give an expression for the area enclosed by the curve and the y-axis (but do not integrate).

$$[0,\frac{2\sqrt{3}}{3}]$$
: $x(t)$ is decreasing and $y(t) \ge 0$

$$[\frac{2\sqrt{3}}{3},2] \colon x(t)$$
 is increasing and $y(t) \geq 0$

Then the area enclosed by the curve and the y-axis is

$$\int_{\frac{2\sqrt{3}}{3}}^{0} t^2 (3t^2 - 4) dt + \int_{\frac{2\sqrt{3}}{3}}^{2} t^2 (3t^2 - 4) dt = -\int_{0}^{\frac{2\sqrt{3}}{3}} t^2 (3t^2 - 4) dt + \int_{\frac{2\sqrt{3}}{3}}^{2} t^2 (3t^2 - 4) dt$$

