Friday Week 8 - Solutions
Calculus 111
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By the Ratio Test, the series diverges (when z +2 # 0). If x +2 =0, i.e. x = —
then all terms of the series are 0, so the series converges to 0. Thus the power series
converges when x = —2 and diverges for all other z-values.

Center: —2
Radius of convergence: 0
Interval of convergence: [—2, —2] = {2}
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By the Ratio Test, the series converges if
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and diverges if
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Hence the power series converges on (—3,7). Note that we found that the series con-
verges if |x — 2| < 5, which is in the form |z — a| < R, where a is the center and R is
the radius of convergence. So we can read off that the series is centered at 2 and the
radius of convergence is 5. Finally we need to see if the series converges or diverges at
each endpoint.

Left endpoint = -3
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ing Series Test. We have that hmn_ﬂ)O \/m = 0 as requlred, and \/nli-u > ( 41r1)+1 for
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all n > 0. Therefore the series is convergent. This shows that the power series converges
n [—3,7), and we are left to check for convergence at the right endpoint.

Right endpoint z = 7:
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gent p-series Wlth p = % So the power series does not converge when x = 7, thus the
interval of convergence is [—3,7).
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which is a diver-

Center: 2
Radius of convergence: 5
Interval of convergence: [—3,7)
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Since the limit is 0 for all values of x, then by the Ratio Test the power series converges
for all values of x. Hence the interval of convergence is (—o0,00) = R, centered at 1
with an infinite radius of convergence.



Note: We determine the center of the interval of convergence directly from the power
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series as it’s presented. A power series is of the form g cn(x — a)™ where a is the center
n=0
of the interval of convergence, so in this case we have ¢, = %, and center a = 1.

Center: 1
Radius of convergence: oo
Interval of convergence: (—oo,00) =R



