Homework 4 - Solutions
Calculus IIT

Exercise 1

Solution.
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hence the integral diverges. If p # 1, then the integral is
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Here we consider two cases. If —p+ 1 > 0, then
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hence the integral diverges. If —p+1 < 0, so p —1 > 0, then
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hence the integral converges. Therefore the integral diverges when p < 1 and converges to

p%l when p > 1.
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Exercise 2

Solution.
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and / — dx converge, then / ——= dx converges by the Comparison Test. 0
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Exercise 3
Solution.

(a) The first five terms are

331—1
1
x2:1+I
1+ !
€Tra =
’ 141
1+ !
Ty =
1+1i1
1
1
x5 =1+
5 1+ 1



(b) The first five terms as single fractions are

8
=
I

=
N
Il

8
w
|

8
Ny
|
oWl TNl w o=

8
o
|

Rewriting as a list T'T23% we might see that the denominators are forming the
Fibonacci sequence (F,) = (1,1,2,3,5,8,13,21,34,55,...), and the numerators are also
forming the Fibonacci sequence but beginning with its second term.

(c)
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The sequence seems to be converging. Indeed, the sequence converges to the golden ratio
. Fyy1 1+45
p = lim = .

n—oo [, 2

g



