
Homework 5 - Solutions
Calculus III

Exercise 1

Solution. We have that
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where the above inequality holds since 2
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= 0 by the Squeeze Theorem.

Exercise 2

Solution. Step 1: remove 1 square of area
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Step 2: remove 8 squares of area
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removed

Step 3: remove 82 squares of area
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Step n: remove 8n−1 squares of area
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The total area removed is found by summing the areas removed at each step:
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This is a geometric series with a = 1
9 and r = 8

9 < 1 that converges to
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= 1.

The original area was 1 and the total area removed is 1, so the total area of the Sierpinski
Carpet is 1− 1 = 0.


