1. The infinite series \(\sum_{n=3}^{\infty} \frac{1}{n \ln n} = \frac{1}{3 \ln 3} + \frac{1}{4 \ln 4} + \frac{1}{5 \ln 5} + \ldots \) diverges to \(\infty \). (By the Integral Test!) However, it does this EXTREMELY slowly: the sum of the first 10 terms is still only a tiny bit bigger than 1! Let’s figure out how many terms need to be added in order to become larger than 3.

Use a graph of \(y = \frac{1}{x \ln x} \) to explain why the partial sum \(\frac{1}{3 \ln 3} + \frac{1}{4 \ln 4} + \ldots + \frac{1}{N \ln N} \) is greater than \(\int_3^{N+1} \frac{1}{x \ln x} \, dx \). Then, use this fact to give a value of \(N \) so that this partial sum is larger than 3. (It will be very large!!)

2. Use the estimation formulas we discussed for the Integral Test to estimate \(\sum_{n=1}^{\infty} \frac{1}{n^3} \) to within 0.001. In fact the value of this series is known to sum to \(\frac{\pi^4}{90} \); check that your answer is indeed within 0.001 of \(\frac{\pi^4}{90} \).

3. Use the Comparison Test to show that \(\sum_{n=2}^{\infty} \frac{1}{n!} \) converges. (In fact, it converges to \(e - 2 \), but we won’t learn why this is until almost the end of the course.)