11.7: Summary of our tests for convergence/divergence of an infinite series

These are quick summaries to fit on one sheet; if you aren’t sure about anything, consult your book/notes for carefully stated versions.

- **Divergence Test:** If the terms x_n do not approach 0, then the series $\sum_{n=1}^{\infty} x_n$ diverges.

- **Integral Test:** If the terms x_n are positive and decreasing, and x_n can be “turned into a function” $f(x)$, then the series $\sum_{n=1}^{\infty} x_n$ and the improper integral $\int_{n=1}^{\infty} f(x) \, dx$ have the same convergence status.

- **Comparison Test:** If $0 \leq x_n \leq y_n$ for all n, and the new series $\sum_{n=1}^{\infty} y_n$ converges, then the original series $\sum_{n=1}^{\infty} x_n$ converges. If $0 \leq y_n \leq x_n$ for all n, and the new series $\sum_{n=1}^{\infty} y_n$ diverges, then the original series $\sum_{n=1}^{\infty} x_n$ diverges. If you get a situation/inequality not listed above, the test was inconclusive and you have to use another one.

- **Limit Comparison Test:** If $x_n / y_n \to L \neq 0$ (and L is a finite number), then the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ have the same convergence status. If $L = 0$ or $L = \pm \infty$, the test was inconclusive and you have to use another one.

- **Alternating Series Test:** If you have a series $\sum_{n=1}^{\infty} (-1)^n x_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$, and the terms x_n are positive, approach 0, and are decreasing, then the original series converges.

- **Absolute Convergence Test:** If you have a series $\sum_{n=1}^{\infty} x_n$, and the series $\sum_{n=1}^{\infty} |x_n|$ converges, then the original series $\sum_{n=1}^{\infty} x_n$ absolutely converges, which means that it converges.

- **Root Test:** If $\sqrt[n]{|x_n|} = |x_n|^{1/n}$ approaches a limit R, then the series $\sum_{n=1}^{\infty} x_n$ converges if $R < 1$ and the series $\sum_{n=1}^{\infty} x_n$ diverges if $R > 1$. If $R = 1$, this test was inconclusive and you have to use another one.

- **Ratio Test:** If $\frac{|x_{n+1}|}{|x_n|} = \left|\frac{x_{n+1}}{x_n}\right|$ approaches a limit R, then the series $\sum_{n=1}^{\infty} x_n$ converges if $R < 1$ and the series $\sum_{n=1}^{\infty} x_n$ diverges if $R > 1$. If $R = 1$, this test was inconclusive and you have to use another one.