11.7: Summary of our tests for convergence/divergence of an infinite series

These are quick summaries to fit on one sheet; if you aren't sure about anything, consult your book/notes for carefully stated versions.

• Divergence Test: If the terms x_n do not approach 0, then the series $\sum_{n=1}^{\infty} x_n$ diverges.

• Integral Test: If the terms x_n are positive and decreasing, and x_n can be "turned into a function" f(x), then the series $\sum_{n=1}^{\infty} x_n$ and the improper integral $\int_{n=1}^{\infty} f(x) dx$ have the same convergence status.

• Comparison Test: If $0 \le x_n \le y_n$ for all n, and the new series $\sum_{n=1}^{\infty} y_n$ converges, then the original series $\sum_{n=1}^{\infty} x_n$ converges. If $0 \le y_n \le x_n$ for all n, and the new series $\sum_{n=1}^{\infty} y_n$ diverges, then the original series $\sum_{n=1}^{\infty} x_n$ diverges. If you get a situation/inequality not listed above, the test was **inconclusive** and you have to use another one.

• Limit Comparison Test: If $\frac{x_n}{y_n} \to L \neq 0$ (and L is a finite number), then the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ have the same convergence status. If L = 0 or $L = \pm \infty$, the test was inconclusive and you have to use another one.

• Alternating Series Test: If you have a series $\sum_{n=1}^{\infty} (-1)^n x_n$ or $\sum_{n=1}^{\infty} (-1)^{n+1} x_n$, and the terms x_n are positive, approach 0, and are decreasing, then the original series **converges**.

• Absolute Convergence Test: If you have a series $\sum_{n=1}^{\infty} x_n$, and the series $\sum_{n=1}^{\infty} |x_n|$ converges, then the original series $\sum_{n=1}^{\infty} x_n$ absolutely converges, which means that it converges.

• Root Test: If $\sqrt[n]{|x_n|} = |x_n|^{1/n}$ approaches a limit R, then the series $\sum_{n=1}^{\infty} x_n$ converges if R < 1 and the series $\sum_{n=1}^{\infty} x_n$ diverges if R > 1. If R = 1, this test was inconclusive and you have to use another one.

• Ratio Test: If $\frac{|x_{n+1}|}{|x_n|} = \left|\frac{x_{n+1}}{x_n}\right|$ approaches a limit R, then the series $\sum_{n=1}^{\infty} x_n$ converges if R < 1 and the series $\sum_{n=1}^{\infty} x_n$ diverges if R > 1. If R = 1, this test was inconclusive and you have to use another one.