
MATH 3162 Homework Assignment 1 Solutions

4.4.1(a): Choose any x0 ∈ R; we wish to show that f(x) = x3 is continuous
at x0. Take an arbitrary sequence (xn) approaching x0. Then, since we can
multiply convergent sequences, we know that (x3n)→ x30, i.e. f(xn)→ x0. This
proves continuity of f at x0, and since x0 was arbitrary, on all of R.

ALTERNATE PROOF: You can also do this with ε and δ. Choose any ε > 0.
Define δ = min(1, ε

3|x0|2+3|x0|+1 ). Consider any x ∈ R with |x − x0| < δ.

Then, clearly |x − x0| < 1 and |x − x0| < ε
3|x0|2+3|x0|+1 . Since |x − x0| < 1,

|x| ≤ |x0|+ |x− x0| ≤ |x0|+ 1. Then,

|x3−x30| = |x−x0| · |x2 +x0x+x20| ≤
ε

3|x0|2 + 3|x0|+ 1
(|x|2 + |x0||x|+ |x0|2)

≤ ε

3|x0|2 + 3|x0|+ 1
((|x0|+1)2+|x0|(|x0|+1)+|x0|2) ≤ ε

3|x0|2 + 3|x0|+ 1
(3|x0|2+3|x0|+1) = ε.

This completes the proof that f is continuous at x0, and since x0 was arbitrary,
we’ve shown that f is continuous on R.
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4.4.1(b): Define ε = 1. We will exhibit sequences xn and yn so that |xn−yn| →
0, but for all n, |f(xn) − f(yn)| ≥ 1. For every n ∈ N, define yn = n and
xn = n+ 1

3n2 . Then clearly |xn − yn| = 1
3n2 , which indeed approaches 0. Also,

for every n ∈ N,

|f(xn)−f(yn)| =

∣∣∣∣∣
(
n+

1

3n2

)3

− n3
∣∣∣∣∣ =

∣∣∣∣n3 + 1 +
1

3n3
+

1

27n6
− n3

∣∣∣∣ = 1+
1

3n3
+

1

27n6
≥ 1.

By Theorem 4.4.5, this means that f is not uniformly continuous on R.
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4.4.1(c): Suppose that S is a bounded subset of R, meaning that there exists N
so that S ⊆ [−N,N ]. Since f is continuous on [−N,N ] and [−N,N ] is compact,
f is uniformly continuous on [−N,N ]. However, this clearly means that f is
uniformly continuous on S as well; since f is u.c. on [−N,N ], ∀ε > 0 ∃δ > 0 s.t.
(|x− y| < δ and x, y ∈ [−N,N ]) =⇒ |f(x)− f(y)| < ε, and this clearly implies
the same statement for S since S ⊆ [−N,N ].

ALTERNATE PROOF: if you want to prove this directly without using Theo-
rem 4.4.7, it’s also possible. Suppose that S ⊆ [−N,N ]. Choose any ε > 0, and
define δ = ε

3N2 . Then, assume that x, y ∈ S and |x − y| < δ. Since x, y ∈ S,
|x|, |y| ≤ N . Then,

|x3 − y3| = |x− y| · |x2 + xy + y2| ≤ ε

3N2
(|x|2 + |x||y|+ |y|2) ≤ ε

3N2
· 3N2 = ε.
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4.4.5: Assume that g : (a, c) → R is uniformly continuous on (a, b] and [b, c).
Choose any ε > 0. Since g is u.c. on (a, b], there exists δ1 so that for all
x, y ∈ (a, b] where |x− y| < δ1, it is true that |g(x)− g(y)| < ε

2 . Similarly, since
g is u.c. on [b, c), there exists δ2 so that for all x, y ∈ [b, c) where |x − y| < δ2,
it is true that |g(x) − g(y)| < ε

2 . Now, define δ = min(δ1, δ2). Assume that
x, y ∈ (a, c) and |x − y| < δ; clearly then |x − y| < δ1 and |x − y| < δ2. There
are four cases.

Case 1: x, y ∈ (a, b]. Then, x, y ∈ (a, b] and |x − y| < δ1, meaning that
|g(x)− g(y)| < ε

2 < ε.

Case 2: x, y ∈ [b, c). Then, x, y ∈ [b, c) and |x − y| < δ2, meaning that
|g(x)− g(y)| < ε

2 < ε.

Case 3: x ∈ (a, b] and y ∈ [b, c). Then, x, b ∈ (a, b] and |x− b| ≤ |x− y| < δ1,
meaning that |g(x)− g(b)| < ε

2 . Similarly, b, y ∈ [b, c) and |b− y| ≤ |x− y| < δ2,
meaning that |g(b)− g(y)| < ε

2 . Finally,

|g(x)−g(y)| = |g(x)−g(b)+g(b)−g(y)| ≤ |g(x)−g(b)|+|g(b)−g(y)| < ε

2
+
ε

2
= ε.

Case 4: y ∈ (a, b] and x ∈ [b, c). Simply reverse the names of x and y and
apply the proof from Case 3 to see that |g(x)− g(y)| < ε.

We showed that for every x, y ∈ (a, c) with |x − y| < δ, |g(x) − g(y)| < ε, so
we’ve proved uniform continuity of g on (a, c).
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Extra problem 1: (Sequential definition) Define S = {1, 12 ,
1
3 ,

1
4 , . . .}. The

sequence xn = 1
n , i.e. 1, 12 ,

1
3 , . . . is in S. However, it converges to 0, and so

all of its subsequences converge to 0 as well. This means that (xn) does not
have a convergent subsequence converging to a limit in S, verifying that S is
not compact.

(Open cover definition) For every n, define Un =
(
n+0.5
n(n+1) ,

n−0.5
n(n−1)

)
. Note that

for every n, 1
n ∈ Un. Therefore,

⋃∞
n=1 Un ⊇

⋃∞
n=1{

1
n} = S, i.e. the collection

U1, U2, U3, . . . forms an open cover for S. For every n, the right endpoint of Un+1

is (n+1)−0.5
(n+1)(n+1−1) = n+0.5

n(n+1) , which is the left endpoint of Un, and so all of the sets

Un are disjoint from one another. Therefore, for every m 6= n, 1
n /∈ Um. This

means that if we remove any particular set Un from the collection U1, U2, . . .,
the union of the remaining sets will not contain 1

n and therefore will not contain
S. So, there is no finite subcover of the open cover U1, U2, . . ., meaning that S
is not compact.

2
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Extra problem 2: Assume that f : D → R and g : D → R are functions
which are each uniformly continuous on D. Choose any ε > 0. Since f is u.c.
on D, there exists δ1 so that for all x, y ∈ D with |x−y| < δ1, it is the case that
|f(x)− f(y)| < ε

2 . Similarly, since g is u.c. on D, there exists δ2 so that for all
x, y ∈ D with |x − y| < δ2, it is the case that |g(x) − g(y)| < ε

2 . Now, define
δ = min(δ1, δ2). Consider any x, y ∈ D for which |x − y| < δ. Clearly then
|x−y| < δ1 and |x−y| < δ2. Therefore, |f(x)−f(y)| < ε

2 and |g(x)−g(y)| < ε
2 ,

meaning that

|(f+g)(x)−(f+g)(y)| = |f(x)+g(x)−f(y)−g(y)| = |(f(x)−f(y))+(g(x)−g(y))|

≤ |f(x)− f(y)|+ |g(x)− g(y)| ≤ ε

2
+
ε

2
= ε.

Since ε was arbitrary, this verifies uniform continuity of f + g on D.
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Extra problem 3: Suppose that f : R → R and x0 ∈ R have the property
that ∃δ > 0 s.t. ∀ε > 0, |x − x0| < δ =⇒ |f(x) − f(x0)| < ε. Consider
any x ∈ (x0 − δ, x0 + δ); clearly |x − x0| < δ. Suppose for a contradiction
that f(x) 6= f(x0), and set ε := |f(x) − f(x0)|; clearly ε > 0. Since ε > 0
and |x − x0| < δ, by assumption we know that |f(x) − f(x0)| < ε. However,
this means that |f(x) − f(x0)| < |f(x) − f(x0)|, a contradiction. Therefore,
our assumption was wrong and f(x) = f(x0). Since x ∈ (x0 − δ, x0 + δ) was
arbitrary, we’ve shown that f(x) = f(x0) for every such x, i.e that f is constant
on (x0 − δ, x0 + δ).
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