MATH 3162 Homework Assignment 1 Solutions

4.4.1(a): Choose any x¢ € R; we wish to show that f(z) = 23 is continuous
at xg. Take an arbitrary sequence (x,) approaching xg. Then, since we can
multiply convergent sequences, we know that (z3) — x3, i.e. f(z,) — 2. This
proves continuity of f at x, and since xo was arbitrary, on all of R.

ALTERNATE PROOF: You can also do this with € and §. Choose any ¢ > 0.
Define § = min(l,m). Consider any z € R with |z — z¢| < 6.
Then, clearly | — xo| < 1 and |z — zo| <
|z| < |zol + & — zo| < [xo] 4 1. Then,
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This completes the proof that f is continuous at x(, and since zy was arbitrary,
we’ve shown that f is continuous on R.
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4.4.1(b): Define ¢ = 1. We will exhibit sequences z,, and y,, so that |z, —y,| —

0, but for all n, |f(zn) — f(yn)| > 1. For every n € N, define y, = n and
Tn =n+ 5iz. Then clearly |z, — y,| = 55z, which indeed approaches 0. Also,

for every n € N,
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By Theorem 4.4.5, this means that f is not uniformly continuous on R.
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4.4.1(c): Suppose that S is a bounded subset of R, meaning that there exists N
so that S C [-N, N]. Since f is continuous on [N, N] and [N, N] is compact,
f is uniformly continuous on [—N, N]. However, this clearly means that f is
uniformly continuous on S as well; since f is u.c. on [N, N], Ve > 0 36 > 0 s.t.
(le —y| < d and z,y € [-N,N]) = |f(x) — f(y)| < ¢, and this clearly implies
the same statement for S since S C [-N, N].

ALTERNATE PROOF: if you want to prove this directly without using Theo-
rem 4.4.7, it’s also possible. Suppose that S C [-N, N]. Choose any € > 0, and

define § = 53=. Then, assume that 2,y € S and |z —y| < 4. Since z,y € S,

|z|,|y| < N. Then,
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4.4.5: Assume that g : (a,¢) — R is uniformly continuous on (a,b] and [b, ¢).
Choose any € > 0. Since g is u.c. on (a,b], there exists d; so that for all
x,y € (a,b] where |z —y| < 01, it is true that |g(x) — g(y)| < §. Similarly, since
g is u.c. on [b,c), there exists do so that for all ,y € [b, c) where |x — y| < 2,
it is true that |g(z) — g(y)| < §. Now, define 6 = min(dy,d2). Assume that
z,y € (a,c) and |x — y| < §; clearly then |z — y| < 01 and |x — y| < d2. There
are four cases.

Case 1: z,y € (a,b]. Then, x,y € (a,b] and |x — y| < 01, meaning that

lg(z) =g < § <e
Case 2: z,y € [b,c¢). Then, z,y € [b,c) and |z — y| < 2, meaning that
lg(z) —g(y)| <5 <e

Case 3: z € (a,b] and y € [b,c¢). Then, z,b € (a,b] and |z — b| < |z —y| < 41,
meaning that |g(z) — g(b)| < §. Similarly, b,y € [b,c) and [b—y| < |z —y| < 02,
meaning that [g(b) — g(y)| < §. Finally,

€ ¢
l9(2)=g(y)l = l9(2)~g(0)+9(b) ~g(¥)| < 19(2)~g(O)|+]g(b)~g(y)| < 5+5 =«
Case 4: y € (a,b] and = € [b,c). Simply reverse the names of z and y and

apply the proof from Case 3 to see that |g(z) — g(y)| < e.

We showed that for every x,y € (a,c) with |z — y| < 4§, |g(x) — g(y)| < €, so
we’ve proved uniform continuity of g on (a, c).

|
Extra problem 1: (Sequential definition) Define S = {1,3,%,%,...}. The
sequence x, = %, ie. 1, %, %, ... 1s in S. However, it converges to 0, and so

all of its subsequences converge to 0 as well. This means that (z,) does not
have a convergent subsequence converging to a limit in .S, verifying that S is
not compact.

n(n+1)’ n(n—1)
for every n, 1 € U,,. Therefore, J;” U, 2 U,— {2} = 5, i.e. the collection
Uy,Us, Us, ... forms an open cover for S. For every n, the right endpoint of U,, 1

(n(f;; (17);?;51) = n"(:;if), which is the left endpoint of U,,, and so all of the sets

U,, are disjoint from one another. Therefore, for every m # n, % ¢ U,,. This
means that if we remove any particular set U, from the collection Uy, Us,.. .,
the union of the remaining sets will not contain % and therefore will not contain
S. So, there is no finite subcover of the open cover Uy, Us, ..., meaning that S
is not compact.

(Open cover definition) For every n, define U,, = ( nt0.5.  n-0.5 ) Note that

is



Extra problem 2: Assume that f : D — R and g : D — R are functions
which are each uniformly continuous on D. Choose any € > 0. Since f is u.c.
on D, there exists 01 so that for all x,y € D with |x —y| < d1, it is the case that
|f(x) — f(y)| < §. Similarly, since g is u.c. on D, there exists J; so that for all
r,y € D with |z — y| < d2, it is the case that [g(x) — g(y)| < 5. Now, define
0 = min(d1,d2). Consider any =,y € D for which |z — y| < §. Clearly then
|z —y| < &1 and |z —y| < d2. Therefore, |f(x)— f(y)| < 5 and |g(x) —g(y)| < £,
meaning that

|(f+9)(x)=(f+9) ()| = [f(@)+g(x)—f(y)—g9(y)| = |(f (=)= f(y))+(9(x)—g(y))]
<|f(x) = f)| +lg9(x) —g(y) < 5+
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2 2
Since € was arbitrary, this verifies uniform continuity of f + ¢g on D.

Extra problem 3: Suppose that f : R — R and zg € R have the property
that 360 > 0 s.t. Ve > 0, |z — xo] < 6 = |f(x) — f(xo)] < e. Consider
any x € (zg — d,z9 + 0); clearly |z — x| < d. Suppose for a contradiction
that f(z) # f(xzo), and set € := |f(x) — f(xo)|; clearly € > 0. Since ¢ > 0
and |z — zo| < J, by assumption we know that |f(x) — f(zo)| < €. However,
this means that |f(z) — f(zo)| < |f(z) — f(zo)|, a contradiction. Therefore,
our assumption was wrong and f(x) = f(zg). Since z € (xg — d,x29 + §) was
arbitrary, we’ve shown that f(z) = f(x¢) for every such z, i.e that f is constant
on (xg — 0, g+ 9).



