MATH 3162 Homework Assignment 3 Solutions

5.2.9(a): Suppose that f’ exists on [a,b] and is not constant. Then there exist
z <y € [a,b] so that f'(z) # f'(y). Since Q° is dense, there exists an irrational
number « between f/(z) and f/(y), and so by Darboux’s Theorem, there exists
¢ € (z,y) so that f'(¢) = a. Therefore, f’ indeed must achieve an irrational
value.

5.3.7: Assume for a contradiction that f is differentiable on an interval (a,b),
/() # 1 on (a,b), and f has two fixed points there, i.e. there exist x < y in
(a,b) for which f(x) = x and f(y) = y. Then, f is differentiable on [z, y], and so
by the Mean Value Theorem there exists ¢ € (z,y) so that f/'(c) = % =
z:—z = 1. This is a contradiction to the assumption that f’ never equals 1, so
our original assumption was wrong and so f has at most one fixed point on

(a,b).
|

5.3.8: Choose any sequence (z,) approaching 0 where z,, > 0 for all n. For
every n, f is differentiable on (0, z,,), and so by the Mean Value Theorem, there
exists ¢, € (0,z,) so that f'(c,) = %:g(o). Since 0 < ¢, < xp, and x, — 0,
cn — 0 aswell, and so f/(cy,) approachesnL since we know that lim,_, f'(z) = L.
But this implies that w approaches L. Since (x,) was arbitrary, we’ve
shown by definition that !

lim
z—0t T —

f@) =10,
0

A nearly identical proof shows that

lim M =TL.

z—0— x—0
Therefore,

lim £ =10 _

z—0 x—0

implying that f'(0) = L.

5.4.5: By definition of g,

g(xm) = g(27™) = h(27™)+2 7 h(27 ™) 4272 (27 2) 4 427 R(1)+27 " R(2)+. .



Since h(z) = 2 for every even integer = and h(z) = z for 0 < z < 1, we can
rewrite as

g(:[jm) = 9(2—1’71) — 2—m+2—12—m+1+2—22—m+2+' . +2—m1 — 2—m+2—m+ . +2—m — (m+1)2—m
Therefore,

-0
=m+ 1.

9(@n) — 9(0) _ (m+1)2°"
Ty, — 0 2=m —(

6.2.1(a): For every x # 0, we claim that f,,(z) — 1. To see this, note that we

can rewrite "

fu(z) = m

Since 1/n — 0 as n — 00, f(z) = % = L since  # 0. On the other hand, if
z =0, then f,(z) = f,(0) = % =0 for all n, and so f,,(0) — 0.

Therefore, (f,) approaches the limit f pointwise, where f is defined by
f(0)=0and f(z) =1 for z #0.

6.2.1(b): No, it is not. To see this, fix ¢ = 1, and we will demonstrate, for
every N € N, examples of z € (0,00) and n > N so that |f,(x) — f(z)] > e.
Specifically, for every N, definen = N+1 and x = ﬁ Then f(z) = N+1,

and £,(¢) = S5 = i = ¥ < 1. Therefore, |f,(2) - f(@)| 2 N >

1 = ¢, completing the proof of the negation of uniform convergence.

6.2.1(d): Yes, it is. To see this, write

1 nx 2

r 1+ na?

1
21+ na?)’

[f(2) = fulz)| =

_ 1+ nz? —nx
| z(1 +na?)

For every x > 1, z(1+nz?) > n, and so for every x € (1,00), | f(z)— fn(z)] <
%. Then, for every € > 0, you can choose N for which % < ¢, and then for
every n > N and every z € (1,00), |f(z) — fo(2z)| < 2 < % < ¢, completing the
proof of uniform convergence.

6.2.7: Suppose that f is uniformly continuous on R. Choose any ¢ > 0, and
choose ¢ so that for all z,y € R, |x —y| < 6§ = |f(x) — f(y)| < e. Then, by the
Archimedean Principle, there exists N so that % < §. Then, for every x € R
and every n > N, |(x 4+ 1/n) — 2| = 1/n < 3 < 4, and so by definition of 4,
|f(x 4+ 1/n) — f(x)] < e. But this means that |f,(z) — f(z)| < €, and since
n > N and z was arbitrary, this proves that f,, — f uniformly.



6.2.8: Suppose that g, are all continuous on a compact set K, g, — g uniformly
on K, and g(z) # 0 for all z € K. First, ¢ is the uniform limit of continuous
functions, and so g is continuous on K. If g(z) could be both positive and
negative for values x € K, then by the Intermediate Value Theorem, there
would exist ¢ where g(c) = 0, a contradiction. Therefore, g is either positive for
all z € K or negative for all x € K. We'll first treat the first case, i.e. g(x) > 0
for all x € K. Since K is compact, g achieves a minimum on K, i.e. there
exists ¢ so that g(c) < g(z) for all z € K. We'll use M to denote g(c); note that
M > 0.

Choose any € > 0. Apply uniform convergence with % This yields N7 so
that for every n > Ny and z € K, |gn(z) — g(z)| < 2. For any such n and z,
lgn(2)] > |g(z)| = |9(z) — gn(z)| > M — & = 2 by the triangle inequality. Now,
again by uniform convergence, choose Ny so that for every n > Ny and = € K,
lgn(x) — g(x)] < 61\242, and define N = max(Ny, N2). Then, for any n > N,
clearly n > N; and n > Ny. Then, for any = € K,

_ @) = g@)] __eM?/2
9@ llga()| = M- (M]2)

’g(lfv) - gntx)

— €

since |gn(z) — g(z)| < d\gz (using n > Na), |g(x)| > M > 0 (using the fact that
M = f(c) is the minimum of f(z) on K), and |g,(z)| > &L > 0 (using n > Ny).
Since € K and n > N were arbitrary, g%(x) — ﬁ uniformly.

If instead ¢ is negative on all of K, then a similar argument can be used
with M equal to the negative of the maximum of g on K.



