
MATH 3162 Homework Assignment 4 Solutions

6.2.3(a): If x = 0, then gn(0) = 0 for all n, so gn(0) → 0. If 0 < x < 1, then
xn → 0, and so gn(x) = x

1+xn → x
1 = x. If x = 1, then gn(1) = 1

2 for all n, so

gn(1)→ 1
2 . If x > 1, then 0 < gn(x) < x

xn = x1−n, which approaches 0. So, by
the Squeeze Theorem, gn(x)→ 0 in this case. We’ve shown that the pointwise
limit of gn is

g(x) =


0 x = 0

x x ∈ (0, 1)
1
2 x = 1

0 x ∈ (1,∞)

�

6.2.3(b): If the convergence were uniform on [0,∞), then since each gn is
continuous on [0,∞), the limit g would be continuous on [0,∞). Since g is not
continuous at x = 1, the convergence cannot be uniform on [0,∞).
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6.2.3(c): Recall that 0 < gn(x) ≤ x1−n. If x ∈ (2,∞), then |gn(x)| ≤ x1−n <
21−n. For any ε > 0, we can choose N so that 21−N < ε, and then for any
n > N and x ∈ (2,∞), |gn(x) − 0| = |gn(x)| < 21−n < 21−N < ε, proving
uniform convergence.
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6.3.2(a): Since 1
n → 0 and

√
x is continuous on (0,∞), hn(x) =

√
x2 + 1

n →√
x2 = |x|. To see that the convergence is uniform, choose ε > 0, and choose N

so that 1√
N
< ε. Then, for every x and every n > N ,

∣∣∣hn(x)−
√
x2
∣∣∣ =

√
x2 +

1

n
−
√
x2 =

1/n√
x2 +

√
x2 + 1/n

≤ 1/n√
1/n

=
1√
n
<

1√
N

< ε,

verifying uniform convergence of hn(x) to h(x) = |x|.
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6.3.2(b): For every n, h′n(x) = 1
2 (x2 + 1

n )−1/2(2x) = x√
x2+1/n

. Since 1
n → 0,

h′n(x)→ g(x) = x√
x2

= x
|x| .

If h′n → g uniformly on some interval I containing 0, then by Theorem 6.3.3,
we would have h differentiable on I, and h′ = g. However, this is clearly false;
the derivative of h(x) = |x| does not exist at x = 0. Therefore, the convergence
h′n → g is not uniform on I.
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6.4.5(a): For every n and x ∈ [−1, 1], |hn(x)| = |x|n
n2 ≤ 1

n2 . So, choose

Mn = 1
n2 . Since

∑∞
n=1Mn =

∑∞
n=1

1
n2 converges, the series

∑∞
n=1

xn

n2 converges
uniformly on [−1, 1] by the Weierstrass M-Test. Since each hn is continuous on
[−1, 1], every partial sum is continuous on [−1, 1], and so the uniform limit h(x)
is also continuous on [−1, 1].
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6.4.5(b): Choose any x0 ∈ (−1, 1). We want to show that f =
∑∞

n=1
xn

n is
continuous at x0. Since −1 < x0 < 1, we can define δ > 0 so that (−1 <
x0 − δ < x0 + δ < 1. Therefore, |x0 − δ|, |x0 + δ| < 1. Now, for every x ∈
(x0− δ, x0 + δ) and every n, |fn(x)| = |x|n

n ≤ max(|x0− δ|, |x0 + δ|)n. So, define
Mn = max(|x0 − δ|, |x0 + δ|)n. Then, max(|x0 − δ|, |x0 + δ|) is the maximum of
two nonnegative numbers less than 1, and so is in [0, 1). Therefore,

∑∞
n=1Mn

is a geometric series and converges.
Therefore, by the Weierstrass M-Test, the series f =

∑∞
n=1

xn

n converges
uniformly on (x0 − δ, x0 + δ). Since each partial sum is continuous on (x0 −
δ, x0 + δ), f is continuous on (x0 − δ, x0 + δ), and so in particular at x0. Since
x0 ∈ (−1, 1) was arbitrary, f is continuous on all of (−1, 1).
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