
MATH 3162 Homework Assignment 5 Solutions

6.5.1(a): When x = 1, g(1) is the alternating harmonic series

∞∑
n=1

(−1)n+1

n
,

which converges by the Alternating Series Test. Therefore, by Theorem 6.5.1, g
converges on (−1, 1]. It must also be continuous there by Theorem 6.5.7. The
series does not converge at x = −1, since g(−1) is the negative harmonic series
∞∑

n=1

−1

n
, which is known to diverge. Therefore, it cannot converge at any x with

|x| > 1; if it did, then it would also converge at x = −1 by Theorem 6.5.1, a
contradiction.

�

6.5.1(b): By Theorem 6.5.7, g′(x) automatically exists for x ∈ (−1, 1). Since
g itself only existed on (−1, 1], the only question is whether g′ exists at x = 1.
By the Term-by-Term differentiation theorem, g is differentiable on (−1, 1) and

g′(x) =

∞∑
n=1

n
(−1)n+1

n
xn−1 =

∞∑
n=1

(−1)n+1xn−1. At x = 1, these terms do not

approach 0, so the series cannot converge there. So, g′(x) is defined only on
(−1, 1).

�

6.5.2(a):

∞∑
n=0

1

nn
xn is such an example; lim sup n

√
|an| = lim sup 1

n = 0, and so

R =∞, meaning that the interval of convergence is (−∞,∞) = R.

�

6.5.2(b): Impossible; every power series converges at x = 0.

�

6.5.2(c):

∞∑
n=1

1

n2
xn is such an example.

�

6.5.2(d): Impossible; if

∞∑
n=0

anx
n converges absolutely at x = 1, then

∞∑
n=0

|an|

converges. However, this implies that

∞∑
n=0

anx
n converges absolutely at x = −1

as well (since |an(−1)n| = |an|), contradicting conditional convergence.

�



6.5.2(e): This one is hard! The easiest example is something like 1− x
2 −

x2

3 +
x3

4 + x4

5 −
x5

6 −
x6

7 . . . Then, at either x = 1 or x = −1, you still have alternating
signs and terms approaching 0, so the series converges at those values. (For
x = 1, the series is 1 − ( 1

2 + 1
3 ) + ( 1

4 + 1
5 ) − . . ., and and x = −1, the series is

(1 + 1
2 ) − ( 1

3 + 1
4 ) + ( 1

5 + 1
6 ) − . . .) However, the absolute values of the terms

form the harmonic series at both of those values, so you don’t have absolute
convergence at either one.

�

6.5.4(a): Consider any x0 ∈ (−R,R), and choose t for which |x0| < t < R.

Then, by assumption,

∞∑
n=0

anx
n converges at t, meaning that

∞∑
n=0

anx
n converges

absolutely at x0, i.e.

∞∑
n=0

|an||x0|n converges. We can multiply by |x0|, and so

∞∑
n=0

|an||x0|n+1 converges. Then, by the Comparison Test,

∞∑
n=0

|an|
n + 1

|x0|n+1

converges, meaning that

∞∑
n=0

an
n + 1

xn+1
0 converges as well (since absolute con-

vergence implies convergence). Since x0 ∈ (−R,R) was arbitrary, we’ve shown

that F (x) =

∞∑
n=0

an
n + 1

xn+1 converges on (−R,R). Therefore, by the Term-by-

Term Differentiation Theorem, F is differentiable on (−R,R) and

F ′(x) =

∞∑
n=0

an
n + 1

(n + 1)xn =

∞∑
n=0

anx
n = f(x)

for all x ∈ (−R,R).

�

6.5.5(a): Consider the function f(x) = xsx−1 for any s ∈ (0, 1). Then, f ′(x) =
sx−1 + x(ln s)sx−2 = sx−2(s + x ln s) for all x. Then f ′(x) > 0⇐⇒ s + x ln s >
0 ⇐⇒ x < −s

ln s , meaning that f is increasing until x0 := −s
ln s and decreasing

thereafter. This implies that f has a global maximum, so it is bounded from
above for all x, meaning that the values f(n) = nsn−1 are also bounded from
above. They are also trivially bounded from below since f(n) > 0 for all n ∈ N.

�

6.5.5(b): Suppose that

∞∑
n=0

anx
n converges for x ∈ (−R,R). Choose any x0 ∈

(−R,R), and t and u satisfying |x0| < t < u < R. Then

∞∑
n=0

anx
n converges at

2



u since u ∈ (−R,R), and so by Theorem 6.5.1,

∞∑
n=0

anx
n converges absolutely

at t, meaning that

∞∑
n=0

|an||t|n converges.

We can then write

∞∑
n=1

|nan||x0|n−1 as

∞∑
n=1

1

|t|
|an|n

(
|x0|
|t|

)n−1

|t|n. We know

by part (a) that there exists M so that n
(
|x0|
|t|

)n−1
< M for all n. Therefore,

for all n,

1

|t|
|an|n

(
|x0|
|t|

)n−1

|t|n <
M

|t|
|an||t|n.

We already know that

∞∑
n=0

M

|t|
|an||t|n =

M

|t|

∞∑
n=0

|an||t|n converges, so by the

Comparison Test,

∞∑
n=1

1

|t|
|an|n

(
|x0|
|t|

)n−1

|t|n =

∞∑
n=1

|nan||x0|n−1

converges as well. This means that

∞∑
n=1

nanx
n−1 converges absolutely at x0,

and so it also converges at x0. Since x0 ∈ (−R,R) was arbitrary, it means that
∞∑

n=1

nanx
n−1 converges on (−R,R).

�

6.5.6: Since

∞∑
n=0

xn =
1

1− x
on (−1, 1), by the Term-by-Term Differentiation

Theorem,
∞∑

n=1

nxn−1 =

(
1

1− x

)′
=

1

(1− x)2

for x ∈ (−1, 1). Therefore, we can plug in x = 1/2 to get

∞∑
n=1

n

2n
=

1

2

∞∑
n=1

n

(
1

2

)n−1

=

1

2
· 1

(1− (1/2))2
= 2.

For the second part, first take the formula above and multiply both sides by
x, yielding

∞∑
n=0

nxn =
x

(1− x)2

3



for x ∈ (−1, 1). Applying the Term-by-Term Differentiation Theorem again
yields

∞∑
n=1

n2xn−1 =

(
x

(1− x)2

)′
=

1 + x

(1− x)3

for x ∈ (−1, 1). Therefore, we can plug in x = 1/2 to get

∞∑
n=1

n2

2n
=

1

2

∞∑
n=1

n2

(
1

2

)n−1

=

1

2
· 1 + (1/2)

(1− (1/2))3
= 6.

�

4


