MATH 3162 Homework Assignment 5 Solutions
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6.5.1(a): When z = 1, g(1) is the alternating harmonic series Z L,
n
n=1

which converges by the Alternating Series Test. Therefore, by Theorem 6.5.1, g
converges on (—1,1]. It must also be continuous there by Theorem 6.5.7. The

series does not converge at x = —1, since g(—1) is the negative harmonic series
[ee]

Z —, which is known to diverge. Therefore, it cannot converge at any = with
n

n=1

|x] > 1; if it did, then it would also converge at x = —1 by Theorem 6.5.1, a
contradiction.

6.5.1(b): By Theorem 6.5.7, ¢’(z) automatically exists for z € (—1,1). Since
g itself only existed on (—1, 1], the only question is whether ¢’ exists at = = 1.
By the Term-by-Term differentiation theorem, g is differentiable on (—1,1) and

= (_1)n+1 1 = +1 1
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g (37) - n " T n:1( ) T T ese terms do no

approach 0, so the series cannot converge there. So, ¢'(z) is defined only on
(_17 1)
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6.5.2(a): E —a" is such an example; limsup {/|a,| = lim sup% =0, and so
n
n=0

R = oo, me;ning that the interval of convergence is (—oo0,0) = R.
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6.5.2(b): Impossible; every power series converges at x = 0.
|
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6.5.2(c): —z" i .
(c) Z " s such an example
n=1
|

(o) o0
6.5.2(d): Impossible; if Z a,x" converges absolutely at z = 1, then Z lan]|

n=0 n=0
o0
converges. However, this implies that Z an,x™ converges absolutely at © = —1
n=0
as well (since |a,(—1)"| = |a,]|), contradicting conditional convergence.



6.5.2(e): This one is hard! The easiest example is something like 1 — 5 — %2 +

THE-FT-% ... Then, at either z = 1 or x = —1, you still have alternating

signs and terms approaching 0, so the series converges at those values. (For
x =1, the series is 1 — (3 + 3) + (; + ) — ..., and and @ = —1, the series is

(1+4)—(+3)+(2+3%) —...) However, the absolute values of the terms

form the harmonic series at both of those values, so you don’t have absolute
convergence at either one.
|
6.5.4(a): Consider any zg € (—R, R), and choose t for which |zg| < t < R.
o0 oo

Then, by assumption, Z a,x" converges at t, meaning that Z an,x" converges

n=0 n=0
oo

absolutely at xo, i.e. Z |an||zo|™ converges. We can multiply by |z, and so
n=0

an|lzol™ converges. Then, by the Comparison Test, |an| n+l
g Y
n=0

n+1

converges, meaning that g ——x( ™" converges as well (since absolute con-

:On+1

vergence implies convergence). Since xg € (—R, R) was arbitrary, we’ve shown
(o)

that F(z) = Z ncf: 1x"+1 converges on (—R, R). Therefore, by the Term-by-

Term Differentiation Theorem, F is differentiable on (—R, R) and

oo

F’(m)zznajl (n+1)x Zan =

n=0

for all z € (—R, R).
|

6.5.5(a): Consider the function f(x) = xs*~! for any s € (0,1). Then, f'(x) =
s+ 2(lns)s* 2 = s*"2(s +xlns) for all z. Then f'(z) >0 <= s+zlns >
0 <= z < %, meaning that f is increasing until xo := =% and decreasing
thereafter. This implies that f has a global maximum, so it is bounded from
above for all z, meaning that the values f(n) = ns"~! are also bounded from

above. They are also trivially bounded from below since f(n) > 0 for all n € N.
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6.5.5(b): Suppose that Z anx” converges for x € (—R, R). Choose any x €
n=0

o0
(=R, R), and t and u satisfying |zo| < t < u < R. Then Z anx™ converges at
n=0



u since u € (—R, R), and so by Theorem 6.5.1, Z an,z" converges absolutely

- n=0
at t, meaning that Z lan||t]" converges.
n= O L
n—
We can then write Z [na,||zo|™ " as Z i lan|n (|xt(|)|) [t|". We know
n=1

by part (a) that there exists M so that n (‘m‘) < M for all n. Therefore,

1 |lzo| \ " M
— —_— t" < "
laaln () e < leali

We already know that Z

= It

for all n,

M
lan|[t]™ = Il Z |an|t]™ converges, so by the
Comparison Test,

o0

1 |{E(]‘ n __ . n—1
n=1

o0
converges as well. This means that Znanx”
n=1
and so it also converges at xg. Since xg € (—R, R) was arbitrary, it means that

~1 converges absolutely at g,

Z na,z""' converges on (—R, R).

(oo}
1
6.5.6: Since » a" = : n (—1,1), by the Term-by-Term Differentiation
n=0
Theorem,
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For the second part, first take the formula above and multiply both sides by
x, yielding



for x € (—1,1). Applying the Term-by-Term Differentiation Theorem again

yields
Z i-02) " (-ap

1—2z

0 2 1 o) 1 n—1
for x € (—1,1). Therefore, we can plug in x = 1/2 to get Z ;L—n =3 Z n? (2) =
n=1 n=1
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