MATH 3162 Homework Assignment 6 Solutions
6.6.4: Consider f(z) =In(1+ z). We claim that Y, D" nis the Taylor
series of f(z), and we will prove that it converges at © = 1. First, we check
that the coefficients are correct. f'(z) = (1 + )7t f’(z) = —11(1 + 2)72,
f(x) = 21(14+2)73, f@(z) = =3!(1+x)~%, etc. Tt is easy to show by induction
that f(™(z) = (=1)"*'(n — 1)!(1 + x)~". Therefore, for the Taylor series,
ap = f(0) =Inl1 =0, and for n > 1, a, f(”)(o) CARUES Y C)

’n n
n+1
desired. Therefore, indeed Y7 | (% ™ s the Taylor series of f(x).
Now, we use the Lagrange Remainder Theorem at z = 1 to prove conver-
gence there. By that theorem, for every N, there exists ¢ € (0,1) s.t.

as
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Since ¢ > 0, this shows that |En(1)] < ﬁ Since ﬁ — 0, this implies
that Ex(1) — 0 (as N — 00), and therefore that the series Y - | %x”
converges to In(1 + x) at = 1. Therefore,
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]

6.7.2: Choose any a < b, any continuous f on [a,b], and any € > 0. Since f
is continuous on the compact set [a,b], it is uniformly continuous. Therefore,
there exists 0 > 0 so that for z,y € [a,b], |z —y| < § = |f( ) f(y)] < e. Now,
by the Archlmedean Principle, there exists n so that § < 2=2. Define z¢ = a,
1 =a+ T= Lo = a—|—2bn S =b; clearly xp1 —xf = bna < ¢ for all k.
Finally, define a polygonal function ¢ by connecting the points (zy, f(zx)) for
0 < k <mn, ie. for every k, ¢(x) is defined on the interval [z, z11] to be the
line segment between (zy, f(xx)) and (xg+1, f(Tr+1))-

We claim that for every x € [a,b], |f(z) — ¢(x)| < e. To see this, choose
any = € [a,b]. There must exist k so that 2 < z < zgy1. Since ¢ is a line
segment between (xy, f(xr)) and (2g41, f(2k+1)) on the interval [z, x41], o(x)
is between f(zx) and f(zk41). Since f is continuous on [zy, zk11], by the IVT
there exists y € [xg, Tk+1] so that f(y) = ¢(x). Then, since x,y € [xg, Tgr1],
|x —y| < xpy1 — x < . Therefore, |f(z) — ¢(z)| = |f(x) — f(y)| < e. Since x
was arbitrary, this completes the proof.

6.7.9(a): Define f(z) = . Then f is continuous on (0, 1). However, there is no
way for a sequence of polynomials p, to uniformly approach f on (0, 1); if this
were the case, then for € = 1, there would exist n so that |p, (z)—1/z| < 1 for all

€ (0,1), which would imply that |1/x| < |p,(2)|+|(1/2) —pn(x)] < |pn(x)|+1



for all z € (0,1). However, this is clearly impossible; p,, is continuous on [0, 1]
and therefore bounded on [0, 1], and so also bounded on (0,1), whereas 1/x is
clearly unbounded on (0, 1).

7.2.4: If L(g,P) =U(g, P), then

0= U(g, P)—L(g, P) = (z_: Mk<$k+1 — .’L‘}g)> — (z_: mk($k+1 — .’L‘k)> = i(Mk_mk)($k+1_-Tk>-
k=0

k=0 k=0

Since each xx41 — x is positive and each My —my > 0, this implies that every
My — my = 0, i.e. that my = My, for each k. This means that for every k,
sup{g(z) : = € [xg,xx+1]} = inf{g(z) : = € [xg,xk41]}, which implies that
{9(z) : = € [xg,zr+1]} is a singleton set. In other words, for every k, g is
constant on [zy, k1], let’s say that g(x) = ay for all x € [z, xk41]. Note that
ap = g(x1) = a1, and so ap = aq. Similarly, a1 = g(z2) = a9, so a1 = as.
Continuing in this way, all a; are equal, and so g in fact must be a constant
function, say g(x) =t for all « € [a,b]. Therefore, g is obviously continuous and
so integrable. For every partition P, U(g, P) = L(g, P) = EZ;S t(rpe1 — k) =
t(b — a), and so f:g(x) dr =t(b— a).

Written problem: Choose any a < b, any continuous f on [a,b], and any
€ > 0. Define M = max(|al, |b]). We may assume without loss of generality that
M > 1; if this were not the case, then we could make it true by making the
interval [a, b] larger, and if we prove the desired conclusion on a larger interval,
it clearly holds on the original as well. By the Weierstrass Approximation
Theorem, there exists a polynomial p(x) so that |f(x) — p(x)| < €/2 for all
x € [a,b]. Write p(z) = ag + a1 + ... + apa™. Then, since Q is dense, for each
i from 0 to n we can find a rational r; satisfying |a; — ;| < m Then,
define the polynomial ¢(z) = ro+rz+...+r,z™. Forevery z € [a,b], |z| < M,
and so

Ip(z) — q(x)] = [(ao —r0) + (a1 —=r1)z + ... + (an — )"

<lag —ro| + lar — ril|lz| + ... + |an — mllx|”
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Finally, this shows that for every x € [a,b], |f(x) — q(z)|
|f (@) = p(z) + p(z) — q(@)] < [f(z) = p(x)| + |p(x) — q(z)|



