
MATH 3162 Homework Assignment 6 Solutions

6.6.4: Consider f(x) = ln(1 + x). We claim that
∑∞
n=1

(−1)n+1

n xn is the Taylor
series of f(x), and we will prove that it converges at x = 1. First, we check
that the coefficients are correct. f ′(x) = (1 + x)−1, f ′′(x) = −1!(1 + x)−2,
f ′′′(x) = 2!(1+x)−3, f (4)(x) = −3!(1+x)−4, etc. It is easy to show by induction
that f (n)(x) = (−1)n+1(n − 1)!(1 + x)−n. Therefore, for the Taylor series,

a0 = f(0) = ln 1 = 0, and for n > 1, an = f(n)(0)
n! = (−1)n+1(n−1)!

n! = (−1)n+1

n as

desired. Therefore, indeed
∑∞
n=1

(−1)n+1

n xn is the Taylor series of f(x).
Now, we use the Lagrange Remainder Theorem at x = 1 to prove conver-

gence there. By that theorem, for every N , there exists c ∈ (0, 1) s.t.

|EN (1)| = |f
(N+1)(c)|

(N + 1)!
1n =

N !(1 + c)−(N+1)

(N + 1)!
=

1

(N + 1)(1 + c)N+1
.

Since c > 0, this shows that |EN (1)| < 1
N+1 . Since 1

N+1 → 0, this implies

that EN (1) → 0 (as N → ∞), and therefore that the series
∑∞
n=1

(−1)n+1

n xn

converges to ln(1 + x) at x = 1. Therefore,

1− 1

2
+

1

3
− 1

4
. . . = ln 2.

�

6.7.2: Choose any a < b, any continuous f on [a, b], and any ε > 0. Since f
is continuous on the compact set [a, b], it is uniformly continuous. Therefore,
there exists δ > 0 so that for x, y ∈ [a, b], |x−y| < δ =⇒ |f(x)−f(y)| < ε. Now,
by the Archimedean Principle, there exists n so that δ < b−a

n . Define x0 = a,

x1 = a+ b−a
n , x2 = a+ 2 b−an , . . . , xn = b; clearly xk+1−xk = b−a

n < δ for all k.
Finally, define a polygonal function φ by connecting the points (xk, f(xk)) for
0 ≤ k ≤ n, i.e. for every k, φ(x) is defined on the interval [xk, xk+1] to be the
line segment between (xk, f(xk)) and (xk+1, f(xk+1)).

We claim that for every x ∈ [a, b], |f(x) − φ(x)| < ε. To see this, choose
any x ∈ [a, b]. There must exist k so that xk ≤ x ≤ xk+1. Since φ is a line
segment between (xk, f(xk)) and (xk+1, f(xk+1)) on the interval [xk, xk+1], φ(x)
is between f(xk) and f(xk+1). Since f is continuous on [xk, xk+1], by the IVT
there exists y ∈ [xk, xk+1] so that f(y) = φ(x). Then, since x, y ∈ [xk, xk+1],
|x− y| ≤ xk+1 − xk < δ. Therefore, |f(x)− φ(x)| = |f(x)− f(y)| < ε. Since x
was arbitrary, this completes the proof.

�

6.7.9(a): Define f(x) = 1
x . Then f is continuous on (0, 1). However, there is no

way for a sequence of polynomials pn to uniformly approach f on (0, 1); if this
were the case, then for ε = 1, there would exist n so that |pn(x)−1/x| < 1 for all
x ∈ (0, 1), which would imply that |1/x| ≤ |pn(x)|+ |(1/x)−pn(x)| < |pn(x)|+1



for all x ∈ (0, 1). However, this is clearly impossible; pn is continuous on [0, 1]
and therefore bounded on [0, 1], and so also bounded on (0, 1), whereas 1/x is
clearly unbounded on (0, 1).

�

7.2.4: If L(g, P ) = U(g, P ), then

0 = U(g, P )−L(g, P ) =

(
n−1∑
k=0

Mk(xk+1 − xk)

)
−

(
n−1∑
k=0

mk(xk+1 − xk)

)
=

n−1∑
k=0

(Mk−mk)(xk+1−xk).

Since each xk+1 − xk is positive and each Mk −mk ≥ 0, this implies that every
Mk − mk = 0, i.e. that mk = Mk for each k. This means that for every k,
sup{g(x) : x ∈ [xk, xk+1]} = inf{g(x) : x ∈ [xk, xk+1]}, which implies that
{g(x) : x ∈ [xk, xk+1]} is a singleton set. In other words, for every k, g is
constant on [xk, xk+1], let’s say that g(x) = ak for all x ∈ [xk, xk+1]. Note that
a0 = g(x1) = a1, and so a0 = a1. Similarly, a1 = g(x2) = a2, so a1 = a2.
Continuing in this way, all ak are equal, and so g in fact must be a constant
function, say g(x) = t for all x ∈ [a, b]. Therefore, g is obviously continuous and

so integrable. For every partition P , U(g, P ) = L(g, P ) =
∑n−1
k=0 t(xk+1−xk) =

t(b− a), and so
∫ b
a
g(x) dx = t(b− a).

�

Written problem: Choose any a < b, any continuous f on [a, b], and any
ε > 0. Define M = max(|a|, |b|). We may assume without loss of generality that
M ≥ 1; if this were not the case, then we could make it true by making the
interval [a, b] larger, and if we prove the desired conclusion on a larger interval,
it clearly holds on the original as well. By the Weierstrass Approximation
Theorem, there exists a polynomial p(x) so that |f(x) − p(x)| < ε/2 for all
x ∈ [a, b]. Write p(x) = a0 + a1x+ . . .+ anx

n. Then, since Q is dense, for each
i from 0 to n we can find a rational ri satisfying |ai − ri| < ε

2Mn(n+1) . Then,

define the polynomial q(x) = r0+r1x+ . . .+rnx
n. For every x ∈ [a, b], |x| ≤M ,

and so

|p(x)− q(x)| = |(a0 − r0) + (a1 − r1)x+ . . .+ (an − rn)xn|
≤ |a0 − r0|+ |a1 − r1||x|+ . . .+ |an − rn||x|n

<
ε

2Mn(n+ 1)
+

ε

2Mn(n+ 1)
M + . . .+

ε

2Mn(n+ 1)
Mn

≤ ε

2Mn(n+ 1)
Mn +

ε

2Mn(n+ 1)
Mn + . . .+

ε

2Mn(n+ 1)
Mn =

ε

2
.

Finally, this shows that for every x ∈ [a, b], |f(x)− q(x)| =
|f(x)− p(x) + p(x)− q(x)| ≤ |f(x)− p(x)|+ |p(x)− q(x)| < ε

2 + ε
2 = ε.
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