MATH 3162 Homework Assignment 7

Instructions: Solve and turn in all of the assigned problems, showing ALL steps or reasoning used in your solutions.

Due on Monday, March 18th, at the BEGINNING of class.

Abbott: 7.2.3, 7.3.3, 7.3.9

• If f is continuous on [a, b], $f(x) \ge 0$ for all $x \in [a, b]$, and f(x) is not the zero function, prove that $\int_a^b f(x) \, dx > 0$.

• Suppose that $f_n(x)$ is a sequence of integrable functions on [a, b] which is decreasing in TWO ways: for each n, $f_n(x)$ is a decreasing function, and for each x, $f_n(x)$ is a decreasing sequence. Also suppose that for every $x \in (a, b]$, $f_n(x) \to 0$. Prove that $\int_a^b f_n(x) dx \to 0$ (as $n \to \infty$).

Extra problems for graduate students:

Abbott: 7.4.6, 7.4.10

• Prove that $\int_0^{2\pi} |\sin x|^n dx \to 0$ (as $n \to \infty$). (You DO NOT need to prove that $|\sin x|^n$ is an integrable function; you may assume this fact.)