
MATH 3162 Homework Assignment 7 Solutions

7.2.3(a): =⇒: assume that f is integrable. Then, for every n, choose ε = 1
n , and

by Theorem 7.2.8, there exists Pn so that 0 ≤ U(f, Pn) − L(f, Pn) < 1
n , which

implies that U(f, Pn)−L(f, Pn)→ 0. In addition, since
∫ b
a
f dx = U(f) = L(f),

for every n we know that L(f, Pn) ≤
∫ b
a
f dx ≤ U(f, Pn). This means that for

each n, |
∫ b
a
f − L(f, Pn)| ≤ U(f, Pn) − L(f, Pn) < 1

n , so L(f, Pn) →
∫ b
a
f dx;

the proof that U(f, Pn)→
∫ b
a
f dx is similar.

⇐=: Assume that there exists a sequence of partitions Pn where U(f, Pn) −
L(f, Pn) → 0. Then for every ε, by definition of convergence, we can choose n
so that U(f, Pn)− L(f, Pn) = |U(f, Pn)− L(f, Pn)| < ε. Since ε was arbitrary,

this proves that f is integrable. Also notice that L(f, Pn) ≤
∫ b
a
f dx ≤ U(f, Pn)

for every n, and the proof that L(f, Pn) →
∫ b
a
f dx and U(f, Pn) →

∫ b
a
f dx is

the same as in the paragraph above.

�

7.2.3(b): For every n, define Pn = {0, 1
n ,

2
n , . . . , 1}, i.e. xk = k

n . Then

L(f, Pn) =

n−1∑
k=0

mk(xk+1−xk) =

n−1∑
k=0

k

n

1

n
=

1

n2
(0+1+2+. . .+(n−1)) =

1

n2
(n− 1)n

2
=
n− 1

2n
and

U(f, Pn) =

n−1∑
k=0

Mk(xk+1−xk) =

n−1∑
k=0

k + 1

n

1

n
=

1

n2
(1+2+. . .+n) =

1

n2
n(n+ 1)

2
=
n+ 1

2n
.

�

7.2.3(c): From (b), we see that U(f, Pn)− L(f, Pn) = n+1
2n −

n−1
2n = 1

n , which

approaches 0. Therefore, f(x) = x is integrable on [0, 1]. Its integral
∫ 1

0
x dx is

the limit of L(f, Pn), which is the limit of n−1
2n = 1

2 −
1
2n , which is 1

2 .

�

7.3.3: Define f(x) as in the problem, equal to 1 iff x = 1
n for some n, and 0

otherwise. Choose any ε > 0. By the Reverse Archimedean Principle, there
exists N so that 1

N < ε
2 . Start defining P by choosing x0 = 0 and x1 = 1

N .
Then, choose M so that 1

M < ε
2N , and define the rest of P by breaking up [ 1

N , 1]
into M equal pieces, i.e.

x2 =
1

N
+

1

M
(1−1/N), x3 =

1

N
+

2

M
(1−1/N), . . . , xM+1 =

1

N
+
M

M
(1−1/N) = 1.

We now write

U(f, P ) =

M∑
k=0

Mk(xk+1 − xk) = M0 ·
1

N
+

M∑
k=1

Mk ·
1− 1/N

M
≤ 1

N
+

M∑
k=1

Mk
1

M
.



Notice that there are only N numbers of the form 1
n which are greater than or

equal to x1 = 1
N , namely 1, 12 , . . . ,

1
N . Therefore, there are at most N intervals

[xk, xk+1] for k ≥ 1 where Mk = 1. This means that

U(f, P ) ≤ 1

N
+

M∑
k=1

Mk
1

M
≤ 1

N
+
N

M
<
ε

2
+
ε

2
= ε.

Finally, we note that

L(f, P ) =

M∑
k=0

mk(xk+1 − xk) = 0,

since mk = 0 for every k. This means that U(f, P ) − L(f, P ) < ε, and since
ε > 0 was arbitrary, f is integrable. Finally, since L(f, P ) = 0 for every P ,

L(f) = 0, and so
∫ 1

0
f dx = 0.

�

7.3.9(a): Choose any ε > 0. Since f is bounded, there exists M so that
−M ≤ f(x) ≤ M for all x ∈ [a, b]. Since D (the set of discontinuities of f)
is content zero, there exist finitely many open intervals I1 = (a1, b1), . . . , In =
(an, bn) so that D ⊆

⋃
Ik and the sum of the lengths of the Ik is less than

ε
4M . Without loss of generality, we assume that the Ik are disjoint and arranged
in increasing order, i.e. a < a1 < b1 < a2 < b2 < . . . < an < bn < b.
Then f is continuous on Dc, meaning that it is continuous on the intervals
[a, a1], [b1, a2], . . . , [bn−1, an], [bn, b].

Since f is continuous on each of these intervals, it is integrable on each of
them, and so we can assign partitions P0 of [a, a1], P1 of [b1, a2], . . ., Pn of [bn, b]
so that U(f, Pk)−L(f, Pk) < ε

2(n+1) for each k. Define P to be the union of all

of the Pk. We now analyze U(f, P )− L(f, P ) by breaking it into pieces:

U(f, P )− L(f, P ) =

N−1∑
k=0

(Mk −mk)(xk+1 − xk) =

n∑
i=0

(U(f, Pi)− L(f, Pi)) +

n∑
i=0

(Mf
[ai,bi]

−mf
[ai,bi]

)(bi − ai).

The first piece represents the upper sum minus the lower sum over the intervals
[a, a1], P1 of [b1, a2], . . ., Pn of [bn, b], which just comes from upper sums mi-
nus lower sums on the partitions P0, . . . , Pn that we already defined for those
intervals. The second piece represents the upper sum minus the lower sum just
on the intervals [a1, b1], . . . , [an, bn], which we did not split at all in P . (mf

[ai,bi]

represents the inf of f over the interval [ai, bi], and Mf
[ai,bi]

represents the sup of

f over the same interval.) Since −M ≤ f(x) ≤M for all x, every Mf
[ai,bi]

≤M

2



and every mf
[ai,bi]

≥ −M . Therefore,

U(f, P )−L(f, P ) =

n∑
i=0

(U(f, Pi)−L(f, Pi)) +

n∑
i=1

(Mf
[ai,bi]

−mf
[ai,bi]

)(bi− ai)

< (n+1)· ε

2(n+ 1)
+

n∑
i=1

2M(bi−ai) =
ε

2
+2M

n∑
i=1

(bi−ai) <
ε

2
+2M

ε

4M
= ε.

(The last < comes from the fact that the sum of the lengths of the intervals
I1, . . . , In is less than ε

4M .) Since ε was arbitrary, we’ve proved that f is inte-
grable on [a, b].

�

7.3.9(b): If F = {x1, . . . , xn} is a finite set and ε > 0, take Ik = (xk− ε
4n , xk +

ε
4n ) for k = 1, 2, . . . , n. Then, since xk ∈ Ik for each k, obviously F ⊂

⋃n
k=1 Ik.

Each Ik has length ε
2n , so the sum of the lengths of the n intervals is ε

2 < ε.

�

7.3.9(c): Recall that the Cantor set is defined as C =
⋂∞
n=0 Cn, where C0 =

[0, 1], C1 = [0, 1/3]∪[2/3, 1], and each Cn is obtained by removing the open mid-
dle thirds of the intervals in Cn−1. (So, for instance, C2 = [0, 1/9]∪ [2/9, 1/3]∪
[2/3, 7/9]∪ [8/9, 1].) Notice that for every n, C ⊂ Cn. This is almost enough to
finish, except that the definition of content zero requires OPEN intervals, and
the intervals which comprise each Cn are closed.

So, we slightly change the definition: for each n, define C ′n by doubling the
length of each small interval in Cn but keeping the same center, and making
each open. So, for instance, C ′1 = (−1/6, 1/2)∪ (1/2, 7/6). (The first interval in
C ′1 has center 1/6 and length 2/3, compared to the first interval of C1 which has
center 1/6 and length 1/3, and the second interval of C ′1 is similarly defined.)
Then for all n, Cn ⊂ C ′n, so C ⊂ C ′n. Also, C ′n is a union of 2n open intervals
which each have length 2

3n , so the total length is 2 · (2/3)n. Fix any ε > 0. Since
(2/3)n → 0, we can choose N so that (2/3)N < ε/2 =⇒ 2 · (2/3)N < ε. Then,
C ′N is a union of finitely many open intervals with total length less than ε which
contains C, so by definition, C has content zero.

�

7.3.9(d): Define f as in the problem, where f(x) = 1 if x ∈ C and f(x) = 0 if
x ∈ Cc. Recall that C is a closed set, so Cc is open. Therefore, for any x ∈ Cc,
there exists δ > 0 so that (x − δ, x + δ) ⊆ Cc, and so f = 0 on the interval
(x − δ, x + δ). This clearly implies that f is continuous at x. Since x ∈ Cc

was arbitrary, f is continuous on all of Cc. So, the discontinuity set D for f is
contained in C, and therefore has content 0 by the argument given in part (c).

�
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7.4.4: Suppose that f is integrable and positive on [a, b]. By the Lebesgue
Criterion from Section 7.6, the discontinuity set D of f has measure 0. So, D
is not all of [a, b]. (If [a, b] had measure 0, then the Dirichlet function would
be integrable on [a, b], and we know that’s false.) Therefore, f is continuous at
some point c ∈ [a, b]. Since f is positive, f(c) > 0. By choosing ε = f(c)/2, we
get δ so that for all x ∈ [a, b] with |x − c| < δ, |f(x) − f(c)| < ε =⇒ f(x) ∈
(f(c) − ε, f(c) + ε) =⇒ f(x) > f(c) − ε = f(c)/2. In other words, we have an
entire interval I = [y, z] so that f(x) > f(c)/2 for all x ∈ I. Then, since f ≥ 0
on [a, y] and [y, b], and f ≥ f(c)/2 on [y, z],∫ b

a

f dx =

∫ y

a

f dx+

∫ z

y

f dx+

∫ b

z

f dx ≥ 0 + (z − y)(f(c)/2) + 0 > 0.

�

Written problem 1: This is extremely similar to the last problem. Since
f ≥ 0 for all x ∈ [a, b] and f is not the zero function, there exists c ∈ [a, b] such
that f(c) > 0. Now, since f is continuous at c, we can apply exactly the same

argument as in the previous problem to get that
∫ b
a
f dx > 0.

�

Written problem 2: Note that from the conditions of the problem, 0 ≤
fn(x) ≤ f1(a) for all n and x ∈ [a, b]. Since each fn is nonnegative for all x,∫ b
a
fn dx ≥ 0 for all n. Now, choose any ε > 0, and define δ = ε

2f1(a)
. From the

conditions of the problem, fn(a + δ) → 0, and so we can choose N so that for
n > N , |fn(a + δ) − 0| = fn(a + δ) < ε

2(b−a) . Then, for n > N , fn(x) ≤ f1(a)

for x ∈ [a, a+ δ] and fn(x) ≤ fn(a+ δ) < ε
2(b−a) for x ∈ [a+ δ, b] (recall that fn

is a decreasing function!) So, for all n > N ,∣∣∣∣∣
∫ b

a

fn dx− 0

∣∣∣∣∣ =

∫ b

a

fn dx =

∫ a+δ

a

fn dx+

∫ b

a+δ

fn dx ≤ δf1(a)+(b−a−δ) ε

2(b− a)
<
ε

2
+
ε

2
= ε.

Since ε > 0 was arbitrary, this proves that
∫ b
a
fn dx→ 0.

�

Written problem 3: =⇒: Assume that f is ε-discontinuous at x. Then, for ev-
ery n, choose δ = 1/n. By definition, there exist y, z ∈ (x−1/n, x+1/n) so that
|f(y) − f(z)| ≥ ε; denote these as yn and zn. Then clearly |f(yn) − f(zn)| ≥ ε
for all n by definition. Also, since x − 1/n < yn, zn < x + 1/n for all n, and
x− 1/n and x+ 1/n approach x (as n→∞), by the Squeeze Theorem, yn and
zn both approach x.

⇐=: Suppose that sequences (yn), (zn) exist which both approach x and where
for all n, |f(yn) − f(zn)| ≥ ε. Then, take any δ > 0. By the definition of
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convergence, there exists N1 so that when n > N1, |yn − x| < δ. Similarly,
there exists N2 so that when n > N2, |zn − x| < δ. Then, we can choose
N = max(N1, N2) + 1, and we know that |yN − x| < δ and |zN − x| < δ,
meaning that yN , zN ∈ (x− δ, x+ δ). Also, |f(yN )− f(zN )| ≥ ε, and so yN and
zN can be the y and z required in the definition of ε-discontinuity, completing
the proof.

�

Written problem 4: We will instead prove the contrapositive, i.e. that if
f 6= g and f, g are continuous on [a, b], then there exists h continuous on [a, b]
so that

∫
fh 6=

∫
gh. Suppose that f, g are continuous and f 6= g; then there

exists c ∈ [a, b] so that f(c) 6= g(c). Without loss of generality, we assume that
f(c) > g(c) (otherwise, we could switch f and g to make this true.) Choose

ε = f(c)−g(c)
2 and use continuity of f, g at c to get δ1, δ2 > 0 so that |x − c| <

δ1 =⇒ |f(x) − f(c)| < ε and |x − c| < δ2 =⇒ |g(x) − g(c)| < ε. Then, define
δ = min(δ1, δ2). If |x− c| < δ, then |x− c| < δ1 and |x− c| < δ2, and so

|f(x)−f(c)| < ε =⇒ f(x) ∈ (f(c)−ε, f(c)+ε) and |g(x)−g(c)| < ε =⇒ g(x) ∈ (g(c)−ε, g(c)+ε).

Define I to be the interval of x ∈ [a, b] for which |x− c| < δ. Then, for all x ∈ I,
f(x) > f(c)− ε and g(x) < g(c)+ ε, so f(x)−g(x) > f(c)−g(c)−2ε = 0 (check
the definition of ε to confirm this).

Now, define h to be a nonnegative continuous function which is 0 for all x
outside the interval I, and satisfies h(c) > 0. (This is easy to design; just picture
h to be 0 on most of [a, b], with a small “bump” contained entirely within I).
Then, since h = 0 outside I and h ≥ 0 and f > g on I, (f − g)h ≥ 0 on [a, b].
Finally, note that at x = c, (f(c) − g(c))h(c) is positive since f(c) > g(c) and
h(c) > 0. So, (f−g)h is continuous and nonnegative on [a, b] and is not the zero

function. Therefore, by Written Problem 1,
∫ b
a

(f −g)h > 0. But we can rewrite∫ b
a

(f − g)h =
∫ b
a
fh − gh =

∫ b
a
fh −

∫ b
a
gh > 0, meaning that

∫ b
a
fh 6=

∫ b
a
gh,

completing the proof.

�

Alternate proof! Choose any f, g continuous on [a, b] where
∫ b
a
fh =

∫ b
a
gh

for all continuous h on [a, b]. Then in particular, we can choose h = f − g, and

so
∫ b
a
f(f − g) =

∫ b
a
g(f − g), meaning that

0 =

∫ b

a

f(f − g)−
∫ b

a

g(f − g) =

∫ b

a

f(f − g)− g(f − g) =

∫ b

a

(f − g)2.

Notice that (f − g)2 is continuous on [a, b] and nonnegative. Therefore, by the
contrapositive of Written Problem 1, (f−g)2 is the zero function, meaning that
f = g.

�
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Written problem 5: Assume that f and g are integrable on [a, b]. Define
Df , Dg, and Dfg to be the discontinuity sets of f , g, and fg respectively.
By the Lebesgue criterion, Df and Dg have measure 0. Also, recall that if f
and g are both continuous at some c, then fg is also continuous at c. Taking
the contrapositive yields: fg discontinuous at c =⇒ f discontinuous at c or g
discontinuous at c. This means that c ∈ Dfg =⇒ c ∈ (Df ∪ Dg), i.e. Dfg ⊆
Df ∪Dg.

Now, choose any ε > 0. Since Df and Dg are measure zero, there exist
countable sets of open intervals I1, I2, . . . and J1, J2, . . . such that Df ⊆

⋃
In,

Dg ⊆
⋃
Jn, and the sums of the lengths of the In and the lengths of the Jn

are each less than ε/2. But then we can just take the countable collection of
intervals I1, J1, I2, J2, . . .; the union contains Df ∪Dg and so contains Dfg, and
the sum of the lengths is less than ε/2 + ε/2 = ε. We have then shown that Dfg

has measure zero. Then, by the Lebesgue criterion, fg is integrable on [a, b].

�
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