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1.18(c). The proof of the reverse direction from part (b) should not have used
the hypothesis that µ∗(E) <∞, so we need only show that the forward direction
can substitute σ-finiteness of µ0 as a hypothesis. So, assume that µ0 is σ-finite
and that E is µ∗-measurable.

Since µ0 is σ-finite, there exist F1, F2, . . . ∈ A so that for all n, µ0(Fk) <∞,
and X =

⋃∞
k=1 Fk. We can assume without loss of generality that the Fk are

disjoint by the fact that A is an algebra and monotonicity (via finite additivity)
of µ0. Also, since each Fk is in A, µ∗(Fk) = µ0(Fk) <∞ for every k.

Now, for every n, define Ek = E ∩ Fk; by monotonicity, µ∗(Ek) ≤ µ∗(Fk) <
∞. Then by part (a), choose An,k ∈ Aσ so that Ek ⊆ An,k and µ∗(An,k) <
µ∗(Ek) + 1

n2|k| . Since E is µ∗-measurable,

µ∗(An,k) = µ∗(An,k ∩ Ek) + µ∗(An,k ∩ Eck) = µ∗(Ek) + µ∗(An,k \ Ek),

so since all of these values are finite, µ∗(An,k \ Ek) < 1
n2|k| .

Then, for every n, define An =
⋃
k∈ZAn,k and A =

⋂
n∈ZAn. Then, clearly

A ∈ Aσδ, E ⊆ A, and and A \ E ⊆ An \ E. So,by monotonicity and countable
subadditivity,

µ∗(A \ E) ≤ µ∗(An \ E) ≤
∑
k∈Z

µ∗(An,k \ Ek) <
∑
k∈Z

1

n2|k|
=

3

n
.

Since n was arbitrary, µ∗(A \ E) = 0 and we’re done.

1.23(b). Clearly M(A) ⊆ P(Q) since A ⊂ P(Q). Conversely, for every q ∈ Q,
{q} =

⋂
n∈N((q−n−1, q+n−1]∩Q), and so {q} ∈ M(A). Then, by Lemma 1.1,

M({{q}q∈Q}) = P(Q) ⊆M(A), and so the sets are equal.

(c) Define the following two measures on P(Q). µ1 is defined by µ1(A) = 0 if
A is empty, and µ1(A) =∞ if A is nonempty. µ2 is defined by µ2(A) = |A|, i.e.
the counting measure on Q. It is simple to check that both are measures, and
both extend µ0 since the only nonempty sets in A were infinite.

We note that the only reason that µ0 did not have a unique extension to
M(A) = P(Q) is that µ0 was not σ-finite; the only set with finite µ0 was
the empty set.

Written problem:

⇐=: Suppose that F (x) = ax+b, and consider µF induced in the usual way.
Then for any interval I = (c, d], µF (I) = F (d) − F (c) = (d − c)x, depending
only on the length of I and meaning that µF (I) = µF (I + x) for any x ∈ R.



Now, for any fixed interval I = (α, β], consider the collection CI = {A ⊆ I :
∀x ∈ R, µF (A) = µF ((A+ x)} of subsets of I for which µF is shift-invariant.

By the above, CI contains all subintervals of I of the form (c, d]. We claim
that CI is a σ-algebra on I. First, consider any A ∈ C. Then for all x ∈ R,

µF ((I\A)+x) = µF ((I+x)\(A+x)) = µF (I+x)−µF (A+x) = µF (I)−µF (A) = µF (I\A).

(We here used the fact that µF is finite on the bounded set I + x.) So, CI is
closed under complements (viewing I as the universal space.) Similarly, for any
disjoint collection A1, A2, . . . ∈ CI ,

µF

(
x+

∞⋃
n=1

An

)
= µF

( ∞⋃
n=1

(x+An)

)
=

∞∑
n=1

µF (x+An) =

∞∑
n=1

µF (An) = µF

( ∞⋃
n=1

An

)
.

So, CI is also closed under countable unions, and so is a σ-algebra over I. Since
it also contains all half-open subintervals of I, in fact CI ⊇ B(I).

Then, for any Borel subset E of R, each of the sets En = E ∩ [n, n+ 1) is a
Borel subset of [n, n+ 1), and so by the above is in C[n,n+1). Then, for any x,

µ(E + x) =

∞∑
n=1

µ(En + x) =

∞∑
n=1

µ(En) = µ(E),

completing the proof.

=⇒: Suppose that µF is shift-invariant. Then, µF ((c, d]) = µF ((c+x, d+x])
for all c < d and x, so F (d) − F (c) = F (d + x) − F (c + x) for all c < d and
x. Define G(x) = F (x) − F (0); then G(0) = 0 and G also has the property
that G(d) − G(c) = G(d + x) − G(c + x) for all c < d and x, and G is also
right-continuous. In particular, for any natural n,

G(n) = G(n)−G(0) =

n−1∑
i=0

G(i+ 1)−G(i) = n(G(1)−G(0)) = nG(1).

Finally, for any natural numbers m,n,

G(n) = G(n)−G(0) =

m−1∑
i=0

G((i+1)n/m)−G(in/m) = m(G(n/m)−G(0)) = mG(n/m).

In other words, G(n/m) = (n/m)G(1). A similar argument works for negative
n, so in fact for all q ∈ Q, G(q) = qG(1). Finally, for any real α, there exists a
sequence of rationals qn approaching α from above, and so by right-continuity
of G,

G(α) = lim
n→∞

G(qn) = lim
n→∞

qnG(1) = αG(1).

So, G(x) = G(1)x for all x, implying that F (x) = (F (1)−F (0))x+F (0) for all
x and completing the proof.


