
Selected solutions for MATH 4280 Assignment 3

1.30. Suppose that m(E) > 0, and choose any ε > 0. First of all, m is σ-finite,
thus semi-finite. Therefore, if m(E) = ∞, we can pass to a subset F with
0 < m(F ) <∞, and if we show that m(I∩F ) > (1−ε)m(I) for some interval I,
then of course the same is true of E, since by monotonicity m(I∩E) ≥ m(I∩F ).
So, without loss of generality, we assume that 0 < m(E) <∞.

Choose δ so that δ
m(E)−δ < ε. Then, by Littlewood’s first principle, we can

choose disjoint intervals I1, . . . , In so that if we denote their union by I, then
m(E4I) < δ. In particular, this implies that m(I) ≥ m(E∩I) = m(E)−m(E \
I) ≥ m(E)−m(E4I) > m(E)− δ.

Then, m(E ∩ I) = m(I) − m(I \ E) ≥ m(I) − m(E4I) > m(I) − δ =
m(I)(1− δ

m(I) ) = m(I)(1− δ
m(E)−δ ) > m(I)(1− ε). In other words, E “covers

proportion of more than 1− ε” of the finite union of intervals I. We now must
show that this property passes to some individual interval.

If every one of the intervals Ii had the property that m(E∩Ii) ≤ m(Ii)(1−ε),
then we would have

m(E ∩ I) =

n∑
i=1

m(E ∩ Ii) ≤
n∑
i=1

m(Ii)(1− ε) = (1− ε)
n∑
i=1

m(Ii) = m(I)(1− ε),

a contradiction. Therefore, one of the intervals Ii satisfies m(E∩Ii) > m(Ii)(1−
ε), and so we are done.

1.31. Consider any set E with m(E) > 0. By problem 30, there exists an
interval I = (a, b) with m(E ∩ I) > 0.99m(I). Now, choose any nonnegative
x ≤ 0.98m(I) = 0.98(b − a). Then, the sets E ∩ I and (E ∩ I) + x are both
contained in J = I ∪ I+x = (a, b+x), and m(J) = m(I) +x ≤ 1.98m(I). Also,
by shift-invariance of Lebesgue measure, m(E∩I) = m((E∩I)+x) > 0.99m(I).
If E∩I and (E∩I)+x were disjoint, then by finite additivity and monotonicity
we would have

m(E ∩ I) +m((E ∩ I) + x) ≤ m(J) ≤ 1.98m(I),

a contradiction. Therefore, E ∩ I and (E ∩ I) + x are not disjoint, and in par-
ticular there exists y ∈ E ∩ (E + x). This means that there exist e, e′ ∈ E
where y = e = e′ + x, and so x = e′ − e ∈ E − E. Since x was an arbitrary
element of [0, 0.98m(I)], this means that [0, 0.98m(I)] ⊆ E − E. The proof for
x ∈ [−0.98m(I), 0] is extremely similar, and we omit details here, but after that
verification we have [−0.98m(I), 0.98m(I)] ⊆ E − E and are done.

1.32. (a) We first note that log
(∏

j∈N(1− αj)
)

=
∑
j∈N log(1 − αj), and so

the problem asked is equivalent to showing that∑
j∈N

aj <∞⇐⇒
∑
j∈N
− log(1− αj) <∞.



We now note that

lim
x→0+

− log(1− x)

x
= lim
x→0+

1
1−x
1

= 1

by L’Hospital’s Rule.
But now, if we assume either of the series above converges, then clearly

αj → 0 as j →∞, which implies by the Limit Comparison Test that the other
series converges as well, and we’re finished.

(Alternately: − log(1− x) = x+ x2/2 + x3/3 + . . ., which is clearly greater
than x, and so

∑∞
1 − log(1 − αj) < ∞ =⇒

∑∞
1 αj < ∞ by the Comparison

Test. For the other direction,

− log(1− x) = x+ x2/2 + x3/3 + . . . < x+ x2 + x3 + . . . =
x

1− x
,

which is less than 2x as long as x < 1
2 . Then, if

∑∞
1 αj <∞, clearly there exists

J so that αj <
1
2 for j > J . Then, since

∑∞
J 2αj <∞,

∑∞
J − log(1− αj) <∞

by the Comparison Test, implying that
∑∞

1 − log(1− αj) <∞ as well.)

(b) Choose any β > 0. The sequence β1/2, β3/4, β7/8, . . . decreases to β and
takes values in (0, 1). Therefore, we should be able to choose αi so that for
every n,

n∏
j=1

(1− αj) = β1−2−n

.

Indeed, for n = 1 we have 1 − α1 = β1/2 =⇒ α1 = 1 − β1/2, and for n > 1
we have

1− αn =

∏n
j=1(1− αj)∏n−1
j=1 (1− αj)

=
β1−2−n

β1−2−(n−1)
= β2−n

.

So, taking αn = 1− β2−n

for all n will yield

∞∏
j=1

(1− αj) = lim
n→∞

β1−2−n

= β.


