
Selected solutions for MATH 4280 Assignment 6

49(a). Choose any E ∈ M ⊗ N with (µ × ν)(E) = 0. Then by definition of
product measure, there exist collections An ∈M, Bn ∈ N s.t. E ⊆

⋃
(An×Bn)

and
∑∞
n=1 µ(An)ν(Bn) <∞.

This means that for each n, either µ(An) and ν(Bn) are both finite, µ(An) =
∞ and ν(Bn) = 0, or µ(An) = 0 and ν(Bn) =∞. Define C, D, and E to be the
sets of n for which these three cases occur, respectively. Define A =

⋃
n∈C An,

B =
⋃
n∈C Bn, Z =

⋃
n∈E An, and Z ′ ∈

⋃
n∈D Bn. Then by countable addi-

tivity, µ(Z) = ν(Z ′) = 0. By definition, A is σ-finite for µ and B is σ-finite
for ν. And, by definition of An and Bn, E ⊆ (A × B) ∪ (Z × Y ) ∪ (X × Z ′).
Define E1 = E ∩ (A × B), E2 = E ∩ (Z × Y ), and E3 = E ∩ (X × Z ′); clearly
E = E1 ∪ E2 ∪ E3. Since (µ× ν)(E) = 0, by monotonicity (µ× ν)(E1) = 0.

We will show only that ν(Ex) = 0 for µ-a.e. x, since the other proof is
extremely similar. It will suffice to show this statement for E1, E2, and E3, since
Ex = (E1)x ∪ (E2)x ∪ (E3)x, and so if each of ν((E1)x), ν((E2)x), and ν((E3)x)
are µ-a.e. equal to 0, the same will be true of ν(Ex) by finite subadditivity.

For E1, we note that E1 ⊆ A × B, and so is contained in the product of
two σ-finite measure spaces, namely the restrictions of µ and ν to A and B
respectively. Therefore, by Theorem 2.36, ν((E1)x) is a measurable function on
A, meaning that ν((E1)x) is also a measurable function on X (since it takes
value 0 on Ac.) Also by Theorem 2.36,

0 = (µ× ν)(E1 ∩ (A×B)) =

∫
A

ν((E1)x) dµ =

∫
X

ν((E1)x) dµ.

(Recall that ν((E1)x) = 0 on Ac.) Then, since ν((E1)x) is a nonnegative mea-
surable function, by Proposition 2.16, it equals 0 µ-a.e.

For E2, note that (E2)x is only nonempty for x ∈ Z, and so ν(E2)x = 0 for
x ∈ Zc, meaning that it is 0 µ-a.e. since µ(Z) = 0.

For E3, note that (E3)x can only take values ∅ or Z ′, and in each case
ν((E3)x) = 0. So, in fact ν((E3)x) = 0 everywhere.

This completes the proof, as described above.

Extra problem: First we rewrite using Lebesgue integral:∫ 1

0

∫ 1

y

x−3/2 cos
(πy

2x

)
dxdy =

∫
T

x−3/2 cos
(πy

2x

)
d(m2) =

∫
x−3/2 cos

(πy
2x

)
χT d(m2),

where T = {(x, y) : 0 ≤ y ≤ 1, y ≤ x ≤ 1}. We first apply Tonelli to show that
f(x, y) := x−3/2 cos

(
πy
2x

)
χT is in L1(m2):∫

|f | d(m2) ≤
∫
x−3/2χT d(m2) =

∫ 1

0

∫ 1

y

x−3/2 dxdy

=

∫ 1

0

(−2x−1/2
∣∣∣1
y
) dy =

∫ 1

0

(−2 + 2y−1/2) dy = −2y + 4y1/2|10 = 2 <∞.



Now we can apply Fubini to the original integral:∫
f d(m2) =

∫ (∫
fx dm(y)

)
dm(x) =

∫ (∫
x−3/2 cos

(πy
2x

)
(χT )x dm(y)

)
dm(x)

=

∫ (∫
x−3/2 cos

(πy
2x

)
χ[0,x] dm(y)

)
χ[0,1]dm(x) =

∫ (∫ x

0

x−3/2 cos
(πy

2x

)
dy

)
χ[0,1]dm(x)

=

∫ (
2

π
x−1/2 sin

(πy
2x

) ∣∣∣x
0

)
χ[0,1]dm(x) =

∫
2

π
x−1/2χ[0,1] dm(x) =

∫ 1

0

2

π
x−1/2 dx

=
4

π
x1/2

∣∣∣1
0

=
4

π
.


