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2.3.12. Suppose that ν1 << µ1 and ν2 << µ2, and that all measures are
σ-finite. We first must show that ν1 × ν2 << µ1 × µ2. Consider any set
C ∈M1 ⊗M2 with (µ1 × µ2)(C) = 0. Then, by Proposition 2.36,

0 = (µ1 × µ2)(C) =

∫
µ2(Cx) dµ1(x).

But µ2(Cx) is a nonnegative measurable function in x, and so its integral equal-
ing 0 forces it to be 0 µ1-a.e. Therefore, there is a µ1-null set A so that
µ2(Cx) = 0 for all x ∈ A. Since ν1 << µ1, A is also a ν1-null set, and since
ν2 << µ2, ν2(Cx) = 0 for all x ∈ A. Therefore,

(ν1 × ν2)(C) =

∫
ν2(Cx) dν1(x) = 0,

since the function being integrated is 0 ν1-a.e. We have then shown that
ν1 × ν2 << µ1 × µ2.

Since ν1 << µ1, ν2 << µ2, and ν1 × ν2 << µ1 × µ2, each pair has a
Radon-Nikodym derivative, which we denote by f ∈ L+(µ1), g ∈ L+(µ2), and
h ∈ L+(µ1 × µ2 for brevity. Each is unique by the Lebesgue-Radon-Nikodym
Theorem, and so to show that h(x, y) = f(x)g(y), we must only show that fg
satisfies the definition of a Radon-Nikodym derivative. In other words, we must
show that for any C ∈ M1 ⊗M2, (ν1 × ν2)(C) =

∫
f(x)g(y)χC d(µ1 × µ2).

(Call this identity (*).) We first prove (*) for rectangles:

(ν1 × ν2)(A×B) = ν1(A)ν2(B) =

(∫
fχA dµ1

)(∫
gχB dµ2

)
=

∫
f(x)χA(x)g(y)χB(y) d(µ1 × µ2) =

∫
h(x, y)χA×B(x, y) d(µ1 × µ2).

Then, clearly (*) follows for finite disjoint unions of rectangles by additiv-
ity of the integral. But we have then shown that the measure ρ defined by
ρ(C) =

∫
f(x)g(y)χC d(µ1 × µ2) agrees with ν1 × ν2 on all sets in the alge-

bra of finite disjoint unions of rectangles, and so since ν1 × ν2 is σ-finite, by
Caratheodory ρ and ν1 × ν2 agree for all sets. But this means that (*) holds
for all C ∈M1⊗M2, proving that h(x, y) = f(x)g(y) and completing the proof.

2.3.13(a). m << µ because the only null sets for µ is the empty set, and
m(∅) = 0. Assume for a contradiction that there exists f ≥ 0 so that dm =
f dµ. Then in particular, 1 = m([0, 1]) =

∫
f dµ. However, for all n,∫

f dµ ≥
∫

1

n
χ{x : f(x)> 1

n}
=

1

n
µ({x : f(x) >

1

n
}) =

1

n
|{x : f(x) >

1

n
}|.



Therefore, for all n, |{x : f(x) > 1
n}| ≤ n, implying that {x : f(x) > 0} =⋃

{x : f(x) > 1
n} is countable. Denote this set by C. Since dm = f dµ,

m([0, 1] \ C) =

∫
fχ[0,1]\C dµ =

∫
0 dµ = 0.

This is however, a, contradiction, since m(C) = m([0, 1]) −m(C) = 1 − 0 = 1
since C is countable. Therefore, we cannot represent dm = f dµ.

2.3.13(b). Assume for a contradiction that µ has such a decomposition; then
µ = λ + ρ where λ ⊥ m and ρ << m. By definition of mutual singularity,
there exists a Lebesgue null set N so that λ([0, 1] \N) = 0. Since m([0, 1]) = 1,
m([0, 1] \ N) = 1 > 0, and so there exists x ∈ [0, 1] \ N . Then, λ({x}) = 0
(since x ∈ [0, 1] \ N and λ([0, 1] \ N) = 0) and ρ({x}) = 0 (since m({x}) = 0
and ρ << m. This implies that µ({x}) = 0, a contradiction to the definition of
counting measure. Therefore, µ has no Lebesgue decomposition with respect to
m.


