
MATH 4290 Homework Assignment 2 Solutions

• We can define the two-sided full shift ({0, 1}Z, σ) in almost the same way as
the (one-sided) full shift ({0, 1}N, σ) from class. (It’s convenient to view {0, 1}Z
as a metric space with the metric

d((xn), (yn)) = 2−max{i∈N : xj=yj for all j satisfying |j|<|i|}.)

Prove that σ is a homeomorphism on {0, 1}Z, that the two-sided full shift factors
onto the one-sided full shift, and that the two-sided full shift is NOT conjugate
to the one-sided full shift.

Solution: It is trivial that σ is a bijection on the two-sided full shift. By
definition, d(σ(xn), σ(yn)), d(σ−1(xn), σ−1(yn)) ≤ 2d(xn, yn) (this is because
max{i ∈ N : xj = yj for all j satisfying |j| < |i|} cannot decrease by more
than 1 by a single shift of both sequences in either direction), which immediately
shows that σ is a homeomorphism.

To show that the two-sided full shift factors onto the full one-sided full shift,
simply define the restriction φ by φ((xn)n∈Z) = (xn)n∈N. To see that φ is
continuous, just note that by definition, d(φ(xn), φ(yn)) ≤ d((xn), (yn)) (this is
because two sequences agreeing on n units to either side of the origin trivially
also agree on the first n units after the origin.) Commuting of the diagram is
nearly as simple: both φ(σ((xn)n∈Z)) and σ(φ((xn)n∈Z)) are equal to x2x3x4 . . ..

Finally, the two-sided full shift is invertible, and the one-sided full shift is
not, so these two systems cannot be conjugate. Formally, since the one-sided
full shift is not invertible, there exist x 6= y so that σ(x) = σ(y) in the one-sided
full shift. If there were a conjugacy ψ from the one-sided full shift to the two-
sided full shift, then ψ(x) 6= ψ(y), but σ(ψ(x)) = ψ(σ(x)) = ψ(σ(y)) = σ(ψ(y)),
contradicting invertibility of the two-sided full shift.

�

• A dynamical system (X,T ) is called topologically transitive if it has a
transitive point, i.e. a point with an orbit which is dense in X. Prove that
the following definition is equivalent: (X,T ) is topologically transitive if for all
nonempty open sets A,B, there exists n so that A ∩ TnB 6= ∅.

Solution: The direction “new definition implies dense orbit” is in your textbook
as Proposition 2.2.1, with a proof provided there. For the other direction,
assume that there exists x ∈ X with a dense orbit. Consider any nonempty
open sets A,B. By definition of dense orbit, there exist m,n s.t. Tmx ∈ A
and Tnx ∈ B. But then Tmx ∈ A ∩ Tm−nB, so A ∩ Tm−nB 6= ∅. (This
proof requires T to be a homeomorphism; in fact if T is non-invertible, then you
must assume that x not only has a dense orbit, but a dense forward orbit, i.e.
O+(x) := {Tnx : n ∈ N} must be dense.)
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• Show that the map φ : {0, 1}N → [0, 1) defined by φ(x1x2 . . .) =
∑∞
n=1 xi2

−i is
continuous, with the product topology on {0, 1}N and the usual (Borel) topology
on [0, 1).

Solution: Suppose that sequences x(k), where x(k) = x
(k)
1 x

(k)
2 . . ., converge to a

limit sequence x = x1x2 . . . in the product topology on {0, 1}N. As discussed in
class, this means that x(k) agrees with x on longer and longer initial segments

as k → ∞. Then, for any ε > 0, choose K so that for k > K, x
(k)
i = xi for

1 ≤ i ≤ d− log2 εe. This means that for any k > K,

|φ(x(k))− φ(x)| =

∣∣∣∣∣
∞∑
i=1

2−i(x
(k)
i − xi)

∣∣∣∣∣ ≤
∞∑
i=1

2−i|x(k)i − xi|.

Note that the first d− log2 εe terms of this are 0, and so the entire sum is bounded
from above by

∞∑
i=d− log2 εe+1

2−i < ε.

Therefore, φ(x(k)) converges to φ(x), proving continuity of φ.
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• For the full shift ({0, 1}N, σ), prove that the set of points with dense orbits is
uncountable. (Optional challenge question: show that this set is residual,
i.e. that its complement is a countable union of nowhere dense sets.)

Solution: As we discussed in class, any x ∈ T with a binary expansion which
contains every finite string of 0s and 1s somewhere has a dense orbit under σ.
There are many ways to show that this set is uncountable. One is to deal with
permutations of the set of finite strings, but this is slightly tricky. An easier
solution is to enumerate the set of finite strings as (wn)n∈N, and define an un-
countable set S of points by .w1 ∗w2 ∗w3 ∗ . . ., where each of the ∗ symbols can
be filled with either 0 or 1. Each of these points will clearly have a dense orbit.
Also, there is a clear injection from {0, 1}N to S, by simply placing any 0 − 1
sequence in the starred locations. Therefore, S is uncountable.

Solution to challenge problem: We claim that for any finite string w of 0s
and 1s, the set Aw := {x : x does not contain w} is nowhere dense in the full
shift. If we show this, we will be finished with the problem, as by our discussions
in class, x has dense orbit if and only if contains every finite string w, which is
true if and only if x ∈ (

⋃
w Aw)

c
.

Choose any finite string w, and any open set U . Since cylinder sets form a
basis for the topology on {0, 1}N, U contains some cylinder set [v]. The cylinder
set [v] clearly contains the cylinder set [vw], where vw is just the concatenation
of v and w, i.e. the word obtained by placing w immediately to the right of v.
However, the cylinder set [vw] consists only of sequences containing vw, each
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of which trivially contains w, and so [vw] ⊂ Acw. So, U contained the open set
[vw] disjoint from Aw. Since U was arbitrary, this shows that Aw is nowhere
dense, and since w was arbitrary, we are done.
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• Show that if αβ /∈ Q, there does not exist a factor map from (T, Tα) to (T, Tβ).

(Hint: you may use the fact that Tα,β is minimal for this problem, even though
we haven’t finished a proof in class.)

Solution: Assume for a contradiction that φ is a factor map from (T, Tα) to
(T, Tβ). There are multiple cases to consider. The first is if α ∈ Q, say α = p

q .

Then, clearly by assumption β /∈ Q. Every point x ∈ T satisfies T qαx = x, and
so by the commutativity of the diagram, T qβ (φ(x)) = φ(T qαx) = φ(x). However,
since β /∈ Q, this is impossible, so we have a contradiction, and such φ could
not exist.

The second case is if α /∈ Q and β ∈ Q, say β = p
q . But then (T, Tα)

is minimal and (T, Tβ) is not, and it’s easily checked (it’s the same proof as
Problem 3 of Assignment 1) that a factor of a minimal system must be minimal.
We therefore again have a contradiction to the existence of φ.

Finally, we consider the most interesting case, where α, β /∈ Q. Then, as
discussed in class, Tα,β is minimal. Therefore, (0, 0.5) is in the orbit closure of
(0, 0) under Tα,β , i.e. there exists a sequence of integers (nk) so that Tnk

α,β(0, 0)→
(0, 0.5). This means that nkα = Tnk

α 0 → 0 (mod 1) and nkβ = Tnk

β 0 → 0.5
(mod 1). Now, consider any x ∈ T. Since nkα → 0 (mod 1), Tnk

α x → x
(mod 1). Since φ is continuous, we then see that

φ(Tnk
α x)→ φ(x).

However, since nkβ → 0.5 (mod 1), Tnk

β y → y + 0.5 (mod 1) for all y ∈ T.
Combining this with commutativity of the diagram yields

φ(Tnk
α x) = Tnk

β φ(x)→ φ(x) + 0.5 6= φ(x) (mod 1).

The sequence (φ(Tnk
α x)) cannot approach two limits, so we have our final con-

tradiction to the existence of φ.

�

• If x is a uniformly recurrent point in a dynamical system (X,T ), and X is a
compact metric space, prove that (O(x), T ) is a minimal system.

Solution: Assume that x is uniformly recurrent. Consider any nonempty open
set U in O(x); then there exists U ′ open in X so that U ′ ∩O(x) = U . Since U ′

is an open set intersecting the closure of O(x), it must contain a point in O(x),
say Tmx ∈ U ′; clearly then Tmx ∈ U as well, and so x is contained in the set
T−mU , which is open by continuity of T . Since X is a compact metric space
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(in fact we’d only need that X is T4), there exists an open set V containing x
so that V ⊂ T−mU .

By uniform recurrence of x, there exists N so that for every n, at least
one of Tnx, . . . , Tn+Nx is in V . Now, consider an arbitrary point y ∈ O(x).
By definition, there exists a sequence (nk) so that Tnkx → y. For each k,
there exists 0 ≤ ik ≤ N so that Tnk+ikx ∈ V . Since there are only finitely
many choices for ik and infinitely many k, there exists a further subsequence
(nkj ) so that for all j, ikj is the same number, let’s call it i. Therefore, for all j,

Tnkj
+ix ∈ V . However, Tnkj

+ix = T iTnkj x. We know that Tnkj
x→ y since it’s

a subsequence of Tnkx, and T i is continuous. Therefore, Tnkj
+ix→ T iy. Since

each term in this sequence was in V , by definition of closure T iy ∈ V ⊂ T−mU .
Finally, this means that T i+my ∈ U , i.e. the orbit of y contains a point in U .
Since U was arbitrary, the orbit of Y is dense in O(x). Since y ∈ O(x) was
arbitrary, we’ve shown that all orbits in (O(x), T ) are dense, and so (O(x), T )
is minimal.
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• Optional challenge question: Find x in the full shift which is uniformly re-
current but not periodic. This will yield an infinite minimal subsystem (O(x), σ)
within the full shift.

Solution: There are many solutions to this, but they’re all quite tricky. (This
really was a challenge problem!) Problem 4 on Assignment 3 outlines a specific
way to get such x, and so the solution to that problem will serve as the easiest
solution to this one.

�
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