MATH 4290 Homework Assignment 3

Due on Thursday, October 4th, at the BEGINNING of class.

• Prove that if (X, T) is topologically transitive and (X, T) factors onto (Y, S), then (Y, S) is topologically transitive.

• Prove that if (X,T) is expansive and (Y,S) and (X,T) are conjugate, then (Y,S) is expansive.

• Prove that if (X, T) and (Y, S) are topologically mixing, then $(X \times Y, T \times S)$ is topologically mixing.

• At the end of class Thursday, we defined a way of symbolically coding orbits of a circle rotation T_{α} (for $\alpha \notin \mathbb{Q}$). For any $\alpha \notin \mathbb{Q}$, and any $x \in \mathbb{T}$, the "orbit coding sequence" $\psi_{\alpha}(x) \in \{0,1\}^{\mathbb{N}}$ is defined as follows.

For every $n \in \mathbb{N}$, define the *n*th bit $(\psi_{\alpha}(x))_n$ of $\psi_{\alpha}(x)$ to be 1 if $T_{\alpha}^n x \in [0, \alpha)$, and 0 otherwise, i.e. if $T_{\alpha}^n x \in [\alpha, 1)$. Then, each $x \in \mathbb{T}$ yields a sequence $\psi_{\alpha}(x)$. Prove that any such sequence $\psi_{\alpha}(x)$ is uniformly recurrent as a point of the full shift. Hint: what does it mean for $\psi_{\alpha}(x)$ to be in a cylinder set [w], i.e. to start with a certain finite string of digits? Can you characterize the set $\{x \in \mathbb{T} : \psi_{\alpha}(x) \in [w]\}$?

• Suppose that (X, T) is any invertible expansive topological dynamical system. I want you to construct a factor map from some two-sided symbolic system (Y, σ) to (X, T), where $Y \subseteq \{1, 2, ..., N\}^{\mathbb{Z}}$ for some N. Here is an outline:

(a) Prove that for the expansiveness constant $\delta > 0$ of (X, T), if x, y have the property that $d(T^n x, T^n y) < \delta$ for all $n \in \mathbb{Z}$, then x = y.

(b) Use this to cover X with a finite collection of closed balls A_i so that, for any x, knowledge of a sequence $(k_n)_{n \in \mathbb{Z}}$ s.t. $T^n x \in A_{k_n}$ for all $n \in \mathbb{Z}$ uniquely determines x.

(c) Use this to construct a symbolic system $Y \subseteq \{1, 2, ..., N\}^{\mathbb{Z}}$ and a factor map from (Y, σ) to (X, T). Remember that you must show that Y is closed in the product topology and σ -invariant!