E. Jeandel

LORIA (Nancy, France)

E. Jeandel, CASD, Part I: Computability

@ What is computability ?
@ Why does computability interact with symbolic dynamics ?
o Computability results on symbolic dynamics.

CASD, Part I: Computability

Computability theory studies which sets, functions, reals... are
computable

Computability theory tries to order sets, functions, reals by how far
they are from being computable.

CASD, Part I: Computability

Main difficulty: There are a lot of computability notions

Computable function f: N — N

Computable set S C N

Computable real r e R

Computable function R — R

Computable set S C {0, 1}

The five definitions are different and cannot be unified.

CASD, Part I: Computability

rt 1: Computability

Definition
A partial function from NX to N is recursive if it can be given by a
program in your favorite programming language.

Church-Turing thesis: the programming language (Java, Python, your
brain, my brain) does not matter

CASD, Part I: Computability

o fi(n) = n? is recursive

(”Jr”')(zﬂ is recursive

o fo(n,m)=n+
o (f,fs) = £, ! are recursive

o f5(n) = the n-th decimal of = is recursive

E. Jeandel, CASD, Part I: Computability

n

. ,4_\ . .
f(n) =< 1 ifthe sequence 66---6 appears in the decimals of =
0 otherwise

iS recursive

E. Jeandel, CASD, Part I: Computability 8n

Examples

. /4,7_\ . .
f(n) =< 1 ifthe sequence 66---6 appears in the decimals of =
0 otherwise

iS recursive

o Either infinitely large sequences of 6 appear, in which case
f(n) =1 for all nand f is certainly recursive

@ Or f(n) =1 for n < k and f(n) = 0 otherwise for some k, and any
such f is certainly recursive

computability # constructivity

CASD, Part I: Computability

Partial functions

Functions computed by programs may be partial: f(n) is not defined if
the program does not halt on input n. J

Sometimes we write f(n) = L to say that f is not defined on n.

@ f(n) =1 if the Collatz sequence starting from n goes to the cycle
1/2/4, 1 otherwise is (partial) recursive.

o f(m, o, N3, Ny, ns,ng) =1 if the equation

M x? 4 mpxy — ngy® — nyx — nsy + ng = 0 has an integral solution,
L otherwise is (partial) recursive

Total variants of these functions (with 0 instead of 1) are known not to
be recursive for variants of the Collatz sequence (Conway 87) and for
polynomials in 38 variables of degree 8 (J.P. Jones).

E. Jeandel, CASD, Part I: Computability

Variants

Once one agrees on codings of Z, ¥*, finite subsets of N, one can
speak about computable functions from X* to X*, etc. J

o Factor maps (seen as maps from finite words to finite words) are
recursive.

@ The function that takes as input a SFT and an integer n, and
outputs the number of periodic points of period n is recursive.

@ The function that takes as input a SFT X and a word w, and
outputs 1 if w is not allowed in X, 0 otherwise is recursive in 1D

@ The function that takes as input a SFT X and a word w, and
outputs 1 if wis not allowed in X, L otherwise is (partial) recursive
in 2D

E. Jeandel, CASD, Part I: Computability

Nonrecursiveness

For cardinality reasons, not all functions are recursive:

@ Each function is given by a program, of which there are only
countable many. We write (¢;),cn for the collection of all programs

o Ideally we would like to say that f(n) = ¢,(n) + 1 is not recursive,
but this does not work (as L. +1 = 1)

o Instead we do f(n) = ¢n(n) + 1 if pp(n) # L and f(n) =0
otherwise.

@ Then f(n) is not recursive obviously

CASD, Part I: Computability

f(n) = ¢n(n) + 1 if ¢p(n) # L and f(n) = 0 otherwise is not (partial)
recursive

g(n) = ¢n(n) is (partial) recursive: you can simulate the n-th program
of input n.

This means there is no algorithm to test whether ¢,(n) = L, which
means there is no algorithm to test whether a program terminates.

CASD, Part I: Computability

Computability theory is not interesting only in computable functions, as
they are so few of them

Reducibility relations is the way to measure how far from computable a
function is

f<xx9g
means intuitively that
o fis easierthan g

@ Assuming someone gives me g in some form, | will be able to
compute f

CASD, Part I: Computability

Reducibilities

A lot of different reducibility relations depending on :
@ How g is given
@ What “computes f” means.

Most of them are similar:

@ They are partial preorders. To each <xx an equivalence relation
~xx is defined

o f~xx gmeans fis as easy as g.
@ Each equivalence class is called a degree

o <xx has a minimal element, the easiest sets of functions, which
usually is the set of “computable” functions.

@ Due to diagonalization arguments, usually no maximal element.

CASD, Part I: Computability

Turing reducibility

f <7 g if fis recursive with oracle g

This is only defined if g is total (f might be partial)
In the code of f, you can call the function g on any value x.

@ gis ablack box, f has no idea how g operates.

Examples: Given g
o f(n) = g(n)? 4 1664g(n) + 666 is (partial) recursive (f <7 g)
@ Suppose that lim g(m)/m > 1. Then f(n) = min{x|g(n+ x) = x}
satisfies f <1 g
o f(n) = min{g(n+ x),x € N}. Then f £ g for almost all g.

CASD, Part I: Computability

Properties

The minimal elements are the (total) recursive functions:

@ Suppose that f <7 g for all g. Then in particuliar f <7 0 where 0 is
the constant function. This means f is (total) recursive.

@ Conversely, if f is (total) recursive, f <7 g for all g, as you don’t
even need g.

There is no maximal elements:
o There are only countably many f s.t. f <7 g (each f is given by a
program)
o <y is a partial relation. In fact {(f, g)|f <t g} is meager.

CASD, Part I: Computability

Properties

Let f(n) = 0 if the n-th program halts on input n, and 1 otherwise.
@ Then f £ 0 (as f is not recursive)
o The degree of f, the set of all functions g s.t. g ~7 f, is called 0.

Functions in 0’ are the easiest nonrecursive functions to define.
Examples of functions in 0':

@ Let g(n, m) = 0 if the n-th program halts on input m and 1
otherwise

o Let g(n) = 0 if the n-th program halts on input 0 and 1 otherwise

o Let g(n) = m—+ 1 if the n-th program halts in m seconds, and 0
otherwise (Assuming the notion of time is well defined).

WARNING: There exists functions hs.t. 0 <7 h <7 0.

E. Jeandel, CASD, Part I: Computability

Computability is defined for functions: N — N but can also be defined
for sets S C N.

What is the good definition of computability for sets ?)

There are conflicting definitions.
For example

What does it mean for the set S of all written books to be computable ?J

CASD, Part I: Computability

Claim 1 (Google)

S is computable because | know a website that can tell me, given an
author x and a title y , whether x wrote y.

Claim 2 (Alexandria Library)

S is computable because | have a way to list all existing books by just
browsing the library of Alexandria

Claim 3 (Lucien’s Library (from Sandman))

S is computable because | have a way to list all non-existing books by
just browsing the library of Dream

CASD, Part I: Computability

Comparison

If I want to know if the book “To the Lighthouse” by Virginia Woolf
exists:
@ | can just use Google
@ | can browse the whole Alexandria library until | find the book. If
the book does not exist, | will never know
@ | can browse the library of Dream until | find the book. If | do, then
the book does not exists. If it exists, | will never know

CASD, Part I: Computability

Comparison

If I want to know if the book “The Sound and Nick Fury” by William
Faulkner does not exist:

@ | can just use Google

@ | can browse the whole Alexandria library until | find the book. If
the book does not exist, | will never know

@ | can browse the library of Dream until | find the book. If | do, then
the book does not exists. If it exists, | will never know

CASD, Part I: Computability

However:

o If I have access to both libraries, | can answer both existence and
nonexistence questions. Therefore both libraries together are
equivalent to Google.

o If the library of Alexandria is sorted, then it is equivalent to Google.

CASD, Part I: Computability

A set S is recursive if y g is recursive. J
A set S is recursively enumerable if S = range f for some partial
recursive function f

S = {f(n), n € N} is an enumeration of S.

A set S is co-recursively enumerable if the complement of S is
recursively enumerable

E. Jeandel, CASD, Part I: Computability 24/1

Equivalence:

o S is recursively enumerable, i.e. the range of a partial recursive
function

o S is the domain of a partial recursive function.
o (for S + () S is the range of a total recursive function

Let S= Domg and fix some a € S. On input (i, n):

@ Launch an execution of g on input n during i seconds (you need a
notion of time)

o If it stops, output n, otherwise output a

CASD, Part I: Computability

If S is the range of a partial recursive function, then S is the domain of
a partial recursive function.

Soppose that S = range f. On input n:

@ For all pairs (i, m) , compute f(m) during exactly i seconds (you
need a notion of time)

o If it halts and outputs n, then stop and returns 666
@ Otherwise goes to the next pair.

This is called dovetailing: we are essentially executing f for all different
inputs in parallel.

CASD, Part I: Computability

S is recursive iff it is both recursively enumerable and corecursively
enumerable.

S = rangef is recursive if f is increasing J

E. Jeandel, CASD, Part I: Computability

Examples

For a function f, let Diag(f) = {(n, f(n)), n € N}.
o If f is total recursive, then Diag(f) is recursive
o If f is partial recursive, then Diag(f) is recursively enumerable
o If Graph(f) is recursively enumerable, then f is partial recursive.

Let f be a total recursive function
o f(S) is recursively enumerable if S is recursively enumerable.
o f~1(S) is recursive if S is recursive.
o ~1(S) is recursively enumerable if S is recursively enumerable.

CASD, Part I: Computability

o Let X be a SFT. The set of n s.t. there exists a point of period n is
recursive.

o Let X be a 1D SFT. The set of patterns that cannot appear in X is
recursive.

o Let X be a 2D SFT. The set of patterns that cannot appear in X is
recursively enumerable.

CASD, Part I: Computability

What is the good notion of reduction for sets ? J

A <xx Biff Ais “computable” given B.
Two notions of computable — Two notions of reductions.

CASD, Part I: Computability

S<r 8iff xs <1 xs]

Assuming you have a way to decide if any y € S, you can devise an
algorithm that decides whether some x € S.

o ForanysetS, S <7 S (where S is the complement of S).
o ForanysetS,SxS<7rS

o ForanysetS, S* <7 S

o Forany set S, f~1(S) < Sif f is total recursive.

CASD, Part I: Computability

Definition

A <¢ Bif Ais there is some program h, taking any enumeration of B as
input (e.g. as a range of some function) s.t. A= rangef.

f uses g as a submodule. g will enumerate B in some random order. f
should enumerate A, in an order depending on g.
(To simplify exposition we suppose B # ()

0 A<gA: h(n)=g(n)

0 Ax A<gA: h(n,m)=(g(n),g(m))

o If f is total recursive, f(S) <e S: h(n) = f(g(n)).

CASD, Part I: Computability

Let D(Xg) the set of patterns that cannot appear in Xg.

Let F be a 1D set of patterns, and Xg the subshift that forbids all of F.
Then D(Xg) <e¢ F.

On input (n, w), h works as follows:
o Askfor F, = {g(1),9(2),...9(n)}, the “first” n forbidden patterns
of F
o If w cannot appear in Xg, output w, otherwise output nothing.

CASD, Part I: Computability

For a subshift X, v(X) <¢ D(X) means that the object v(X) can be
enumerated if we have approximations of X from above by SFTs.

Indeed, if we know only n patterns of D(X) we obtain a
surapproximation of X by some SFT.

CASD, Part I: Computability

Let X be subshift and f a block map. Then D(f(X)) <¢ D(X). J

On input (n, w), h works as follows:
o Askfor F, = {g(1),9(2),...9(n)}, the “first” n forbidden patterns
of D(X)
@ Compute all words u s.t. f(u) = w. If none of them can appear in
Xg,, output w, otherwise output nothing.

F(N1x) =N |

CASD, Part I: Computability

Let X be a (nonempty) minimal subshift. Then D(X)¢ < D(X). J

On input (n, w), h works as follows:
o Ask for F ={9(1),9(2),...g(n)}, the “first” n forbidden patterns
of D(X)
o If Xk uqwy is empty, output w. Otherwise output nothing.

CASD, Part I: Computability

2D

All preceding examples work in 2D, with a slight modification: You
cannot know if Xg is empty.

With the same definitions as before, in 2D,
D(XF) <e F. J
On input (i, n, w), h works as follows:

o Ask for F, = {g9(1),9(2),...g(n)}, the “first” n forbidden patterns
of F

@ If no pattern of size i that is valid for F, contains w at its center,
output w, otherwise output nothing.

If X is sofic, then D(X) is recursively enumerable]

CASD, Part I: Computability

Application

Let X be a minimal 2D subshift of finite type.
Then D(X) is recursive. J

Let X = Xg for some finite set F.

o D(X) < F. But F is finite therefore D(X) is enumerable given a
finite set, and therefore recursively enumerable.

o D(X)C <¢ D(X). D(X)° is enumerable given a enumerable set,
and therefore enumerable (plug into g the recursive function s.t.
range g = D(X).

@ D(X) is recursively enumerable and corecursively enumerable
and therefore recursive.

CASD, Part I: Computability

Computability theory has been defined in this talk informally.

To define it formally, we need a definition of a computer. J

CASD, Part I: Computability

Turing Machines

The theoretical model of computation is Turing machines.
In its simplest form, a Turing Machine contains:

@ An infinite tape, that can contain symbols in

o A distinguished position on the tape (the head)
o Astatein Q

@ Anupdate function Q x ¥ - Q x X x {—1,0,1}

The input is initially written on the tape, and the machine evolves from
a specific (initial) state until reaching a specific (halting) state.

CASD, Part I: Computability

42/

CASD, Part I: Computability

=]

CASD, Part I: Computability

Turing Machines

[ccaaOOOOOOO

CASD, Part I: Computability

Partial recursive functions are equivalent to Turing machines J

What about programs with black boxes ? We add additional socalled
“oracle tapes”

It is easier to code programs, but easier to encode machines. J

E. Jeandel, CASD, Part I: Computability 43/1

There is an encoding of Turing machines into SFTs. J

E. Jeandel, CASD, Part I: Computability

(clclalalalblblafb]b]a

(clclblalalblblafblb]a
(clafolalafblblafb]b]a
(alalolaalblblafb]b]a

E. Jeandel, CASD, Part I: Computability

CEEEERLELRLEE e sl @ = =
@

CEREEREERREE Senl @ @
CEEEEREEREE JdemT wl L .
CEEEEEEERREE le=T .| L] L] .

E. Jeandel, CASD, Part I: Computability 45/1

(clclalalalblblafb]b]a

EGERDRNBDRDNE o
CEBEERE R q

a
GEEEEEGEEDE

qg a

E. Jeandel, CASD, Part I: Computability 45/1

(clclalalalblblafb]b]a

(9.a8) — (q',4.,1)

GENRRNDRARNE q 4
(eTalela 2 b b2 o 0]z

@ a
GEDRRNDRARNE

qg a

E. Jeandel, CASD, Part I: Computability 45/1

(clclalalalblblafb]b]a

EGERDRNBDRDNE o
CEBEERE R q

a
GEEEEEGEEDE

qg a

E. Jeandel, CASD, Part I: Computability 45/1

CEEEERLELRLEE e sl @ = =
@

CEREEREERREE Senl @ @
CEEEEREEREE JdemT wl L .
CEEEEEEERREE le=T .| L] L] .

E. Jeandel, CASD, Part I: Computability 45/1

First result

Suppose we start from a machine M which a nonrecursive domain.

o Before building X, we delete the final state from M so that either
M runs indefinitely or M hangs.

o To “feed” the input n to the SFT, we only have to look at
configurations that contains the n x 1 pattern u, = goa"0 at the
origin.

@ Then u, can appear in the SFT iff M runs forever on input n.

Therefore the language of X is not recursive.

Theorem (Robinson)
There exists a SFT X with a nonrecursive language.

CASD, Part I: Computability

Berger theorem

Theorem (Berger)
There is no algorithm that decides if a SFT is empty

A SFT can be given by finite patterns and therefore by an integer n. So
it means “the set of all empty SFTs is not recursive”.
Idea of the proof
@ For each machine M, build a SFT X s.t. X is nonempty iff M does
not halt on input 0 (note: a machine is just an integer).

@ Previous construction does not work (why ?)

CASD, Part I: Computability

