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Introduction

What is computability ?
Why does computability interact with symbolic dynamics ?
Computability results on symbolic dynamics.

E. Jeandel, CASD, Part I: Computability 2/1



What is computability
My point of view

Computability theory studies which sets, functions, reals... are
computable

Computability theory tries to order sets, functions, reals by how far
they are from being computable.
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Warning

Main difficulty: There are a lot of computability notions

Computable function f : N→ N

Computable set S ⊆ N

Computable real r ∈ R

Computable function R→ R

Computable set S ⊆ {0,1}N

The five definitions are different and cannot be unified.
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Plan
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Informal definition

Definition
A partial function from Nk to N is recursive if it can be given by a
program in your favorite programming language.

Church-Turing thesis: the programming language (Java, Python, your
brain, my brain) does not matter
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Examples

f1(n) = n2 is recursive

f2(n,m) = n + (n+m)(n+m+1)
2 is recursive

(f3, f4) = f−1
2 are recursive

f5(n) = the n-th decimal of π is recursive
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Examples

f (n) =

 1 if the sequence

n︷ ︸︸ ︷
66 · · · 6 appears in the decimals of π

0 otherwise

is recursive

Either infinitely large sequences of 6 appear, in which case
f (n) = 1 for all n and f is certainly recursive
Or f (n) = 1 for n < k and f (n) = 0 otherwise for some k , and any
such f is certainly recursive

computability 6= constructivity
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Partial functions

Functions computed by programs may be partial: f (n) is not defined if
the program does not halt on input n.

Sometimes we write f (n) = ⊥ to say that f is not defined on n.

f (n) = 1 if the Collatz sequence starting from n goes to the cycle
1/2/4, ⊥ otherwise is (partial) recursive.
f (n1,n2,n3,n4,n5,n6) = 1 if the equation
n1x2 + n2xy − n3y2 − n4x − n5y + n6 = 0 has an integral solution,
⊥ otherwise is (partial) recursive

Total variants of these functions (with 0 instead of ⊥) are known not to
be recursive for variants of the Collatz sequence (Conway 87) and for
polynomials in 38 variables of degree 8 (J.P. Jones).
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Variants

Once one agrees on codings of Z,Σ?, finite subsets of N, one can
speak about computable functions from Σ? to Σ?, etc.

Factor maps (seen as maps from finite words to finite words) are
recursive.
The function that takes as input a SFT and an integer n, and
outputs the number of periodic points of period n is recursive.
The function that takes as input a SFT X and a word w , and
outputs 1 if w is not allowed in X , 0 otherwise is recursive in 1D
The function that takes as input a SFT X and a word w , and
outputs 1 if w is not allowed in X , ⊥ otherwise is (partial) recursive
in 2D
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Nonrecursiveness

For cardinality reasons, not all functions are recursive:
Each function is given by a program, of which there are only
countable many. We write (φi)i∈N for the collection of all programs
Ideally we would like to say that f (n) = φn(n) + 1 is not recursive,
but this does not work (as ⊥+ 1 = ⊥)
Instead we do f (n) = φn(n) + 1 if φn(n) 6= ⊥ and f (n) = 0
otherwise.
Then f (n) is not recursive obviously
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Nonrecursiveness

f (n) = φn(n) + 1 if φn(n) 6= ⊥ and f (n) = 0 otherwise is not (partial)
recursive

g(n) = φn(n) is (partial) recursive: you can simulate the n-th program
of input n.

This means there is no algorithm to test whether φn(n) = ⊥, which
means there is no algorithm to test whether a program terminates.
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Reducibilities

Computability theory is not interesting only in computable functions, as
they are so few of them

Reducibility relations is the way to measure how far from computable a
function is

f ≤XX g

means intuitively that
f is easier than g
Assuming someone gives me g in some form, I will be able to
compute f
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Reducibilities

A lot of different reducibility relations depending on :
How g is given
What “computes f” means.

Most of them are similar:
They are partial preorders. To each ≤XX an equivalence relation
∼XX is defined
f ∼XX g means f is as easy as g.
Each equivalence class is called a degree
≤XX has a minimal element, the easiest sets of functions, which
usually is the set of “computable” functions.
Due to diagonalization arguments, usually no maximal element.
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Turing reducibility

f ≤T g if f is recursive with oracle g

This is only defined if g is total (f might be partial)
In the code of f , you can call the function g on any value x .

g is a black box, f has no idea how g operates.

Examples: Given g
f (n) = g(n)2 + 1664g(n) + 666 is (partial) recursive (f ≤T g)
Suppose that lim g(m)/m > 1. Then f (n) = min{x |g(n + x) = x}
satisfies f ≤T g
f (n) = min{g(n + x), x ∈ N}. Then f 6≤T g for almost all g.
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Properties

The minimal elements are the (total) recursive functions:
Suppose that f ≤T g for all g. Then in particuliar f ≤T 0 where 0 is
the constant function. This means f is (total) recursive.
Conversely, if f is (total) recursive, f ≤T g for all g, as you don’t
even need g.

There is no maximal elements:
There are only countably many f s.t. f ≤T g (each f is given by a
program)
≤T is a partial relation. In fact {(f ,g)|f ≤T g} is meager.
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Properties

Let f (n) = 0 if the n-th program halts on input n, and 1 otherwise.
Then f 6≤T 0 (as f is not recursive)
The degree of f , the set of all functions g s.t. g ∼T f , is called 0′.

Functions in 0′ are the easiest nonrecursive functions to define.
Examples of functions in 0′:

Let g(n,m) = 0 if the n-th program halts on input m and 1
otherwise
Let g(n) = 0 if the n-th program halts on input 0 and 1 otherwise
Let g(n) = m + 1 if the n-th program halts in m seconds, and 0
otherwise (Assuming the notion of time is well defined).

WARNING: There exists functions h s.t. 0 <T h <T 0′.
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Plan
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Overview

Computability is defined for functions: N→ N but can also be defined
for sets S ⊆ N.

What is the good definition of computability for sets ?

There are conflicting definitions.
For example

What does it mean for the set S of all written books to be computable ?

E. Jeandel, CASD, Part I: Computability 19/1



Three definitions

Claim 1 (Google)
S is computable because I know a website that can tell me, given an
author x and a title y , whether x wrote y .

Claim 2 (Alexandria Library)
S is computable because I have a way to list all existing books by just
browsing the library of Alexandria

Claim 3 (Lucien’s Library (from Sandman) )
S is computable because I have a way to list all non-existing books by
just browsing the library of Dream
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Comparison

If I want to know if the book “To the Lighthouse” by Virginia Woolf
exists:

I can just use Google
I can browse the whole Alexandria library until I find the book. If
the book does not exist, I will never know
I can browse the library of Dream until I find the book. If I do, then
the book does not exists. If it exists, I will never know
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Comparison

If I want to know if the book “The Sound and Nick Fury” by William
Faulkner does not exist:

I can just use Google
I can browse the whole Alexandria library until I find the book. If
the book does not exist, I will never know
I can browse the library of Dream until I find the book. If I do, then
the book does not exists. If it exists, I will never know
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Comparison

However:
If I have access to both libraries, I can answer both existence and
nonexistence questions. Therefore both libraries together are
equivalent to Google.
If the library of Alexandria is sorted, then it is equivalent to Google.
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Definitions

A set S is recursive if χS is recursive.

A set S is recursively enumerable if S = range f for some partial
recursive function f

S = {f (n),n ∈ N} is an enumeration of S.

A set S is co-recursively enumerable if the complement of S is
recursively enumerable
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Definitions

Theorem
Equivalence:

S is recursively enumerable, i.e. the range of a partial recursive
function
S is the domain of a partial recursive function.
(for S 6= ∅) S is the range of a total recursive function

Let S = Dom g and fix some a ∈ S. On input (i ,n):
Launch an execution of g on input n during i seconds (you need a
notion of time)
If it stops, output n, otherwise output a
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Definitions

Theorem
If S is the range of a partial recursive function, then S is the domain of
a partial recursive function.

Soppose that S = range f . On input n:
For all pairs (i ,m) , compute f (m) during exactly i seconds (you
need a notion of time)
If it halts and outputs n, then stop and returns 666
Otherwise goes to the next pair.

This is called dovetailing: we are essentially executing f for all different
inputs in parallel.
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Properties

S is recursive iff it is both recursively enumerable and corecursively
enumerable.

S = range f is recursive if f is increasing

E. Jeandel, CASD, Part I: Computability 27/1



Examples

For a function f , let Diag(f ) = {(n, f (n)),n ∈ N}.
If f is total recursive, then Diag(f ) is recursive
If f is partial recursive, then Diag(f ) is recursively enumerable
If Graph(f ) is recursively enumerable, then f is partial recursive.

Let f be a total recursive function
f (S) is recursively enumerable if S is recursively enumerable.
f−1(S) is recursive if S is recursive.
f−1(S) is recursively enumerable if S is recursively enumerable.
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Examples

Let X be a SFT. The set of n s.t. there exists a point of period n is
recursive.
Let X be a 1D SFT. The set of patterns that cannot appear in X is
recursive.
Let X be a 2D SFT. The set of patterns that cannot appear in X is
recursively enumerable.
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Reducibilities

What is the good notion of reduction for sets ?

A ≤XX B iff A is “computable” given B.
Two notions of computable→ Two notions of reductions.
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Turing Reducibility

S ≤T S′ iff χS ≤T χS′

Assuming you have a way to decide if any y ∈ S′, you can devise an
algorithm that decides whether some x ∈ S.

For any set S, S ≤T S (where S is the complement of S).
For any set S, S × S ≤T S
For any set S, S? ≤T S
For any set S, f−1(S) ≤T S if f is total recursive.
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Enumeration reducibility

Definition
A ≤e B if A is there is some program h, taking any enumeration of B as
input (e.g. as a range of some function) s.t. A = range f .

f uses g as a submodule. g will enumerate B in some random order. f
should enumerate A, in an order depending on g.
(To simplify exposition we suppose B 6= ∅)

A ≤e A: h(n) = g(n)

A× A ≤e A: h(n,m) = (g(n),g(m))

If f is total recursive, f (S) ≤e S: h(n) = f (g(n)).
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Examples

Let F be a 1D set of patterns, and XF the subshift that forbids all of F .
Let D(XF ) the set of patterns that cannot appear in XF .
Then D(XF ) ≤e F .

On input (n,w), h works as follows:
Ask for Fn = {g(1),g(2), . . .g(n)}, the “first” n forbidden patterns
of F
If w cannot appear in XF , output w , otherwise output nothing.
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Enumeration reducibility

For a subshift X , γ(X ) ≤e D(X ) means that the object γ(X ) can be
enumerated if we have approximations of X from above by SFTs.

Indeed, if we know only n patterns of D(X ) we obtain a
surapproximation of X by some SFT.
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Examples

Let X be subshift and f a block map. Then D(f (X )) ≤e D(X ).

On input (n,w), h works as follows:
Ask for Fn = {g(1),g(2), . . .g(n)}, the “first” n forbidden patterns
of D(X )

Compute all words u s.t. f (u) = w . If none of them can appear in
XFn , output w , otherwise output nothing.

f
(⋂

Xi

)
=
⋂

f (Xi)
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Examples

Let X be a (nonempty) minimal subshift. Then D(X )c ≤e D(X ).

On input (n,w), h works as follows:
Ask for Fn = {g(1),g(2), . . .g(n)}, the “first” n forbidden patterns
of D(X )

If XFn∪{w} is empty, output w . Otherwise output nothing.
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2D

All preceding examples work in 2D, with a slight modification: You
cannot know if XF is empty.

With the same definitions as before, in 2D,
D(XF ) ≤e F .

On input (i ,n,w), h works as follows:
Ask for Fn = {g(1),g(2), . . .g(n)}, the “first” n forbidden patterns
of F
If no pattern of size i that is valid for Fn contains w at its center,
output w , otherwise output nothing.

If X is sofic, then D(X ) is recursively enumerable
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Application

Let X be a minimal 2D subshift of finite type.
Then D(X ) is recursive.

Let X = XF for some finite set F .

D(X ) ≤e F . But F is finite therefore D(X ) is enumerable given a
finite set, and therefore recursively enumerable.
D(X )C ≤e D(X ). D(X )c is enumerable given a enumerable set,
and therefore enumerable (plug into g the recursive function s.t.
range g = D(X ).
D(X ) is recursively enumerable and corecursively enumerable
and therefore recursive.
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Plan
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Models

Computability theory has been defined in this talk informally.

To define it formally, we need a definition of a computer.
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Turing Machines

The theoretical model of computation is Turing machines.
In its simplest form, a Turing Machine contains:

An infinite tape, that can contain symbols in Σ

A distinguished position on the tape (the head)
A state in Q
An update function Q × Σ→ Q × Σ× {−1,0,1}

The input is initially written on the tape, and the machine evolves from
a specific (initial) state until reaching a specific (halting) state.
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Turing Machines

q0

a a b a 0 0 0 0 0 0 0

q1

c a b a 0 0 0 0 0 0 0

q1

c c b a 0 0 0 0 0 0 0

q2

c c a a 0 0 0 0 0 0 0
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Turing vs p.r.f.

Partial recursive functions are equivalent to Turing machines

What about programs with black boxes ? We add additional socalled
“oracle tapes”

It is easier to code programs, but easier to encode machines.
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Encodings

There is an encoding of Turing machines into SFTs.
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The proof

q0

a a b a a b b a b b a

q1

c a b a a b b a b b a

q1

c c b a a b b a b b a

q2

c c a a a b b a b b a
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First result

Suppose we start from a machine M which a nonrecursive domain.

Before building X , we delete the final state from M so that either
M runs indefinitely or M hangs.
To “feed” the input n to the SFT, we only have to look at
configurations that contains the n × 1 pattern un = q0an0 at the
origin.
Then un can appear in the SFT iff M runs forever on input n.

Therefore the language of X is not recursive.

Theorem (Robinson)
There exists a SFT X with a nonrecursive language.
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Berger theorem

Theorem (Berger)
There is no algorithm that decides if a SFT is empty

A SFT can be given by finite patterns and therefore by an integer n. So
it means “the set of all empty SFTs is not recursive”.
Idea of the proof

For each machine M, build a SFT X s.t. X is nonempty iff M does
not halt on input 0 (note: a machine is just an integer).
Previous construction does not work (why ?)
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