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Last time

Theorem (Berger)
There is no algorithm to decide if a SFT is empty

Theorem (Robinson)
There exist a SFT X for which no algorithm can decide if a pattern
appears in X

Turing machines are easy to encode into SFTs.
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Glass Half Empty

Almost every statement/invariant about two-dimensional SFTs is not
computable

Recipe:
1 Take a Turing machine
2 Encode it into a SFT with some specific property
3 ?????
4 Profit
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Glass Half Full

We can do a lot of things with two-dimensional SFTs.

If S is a recursive set, we can maybe encode S into a SFT.
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Examples

Let S be the set of prime numbers.

There exists a SFT X s.t. 01n0 appears in X iff n is prime

There exists a SFT X s.t. there is a point of period n iff n is prime

There exists a SFT X of entropy
∑

p∈P
1
p2

There exists a SFT X of pattern growth O(n
∑

p∈P
10
p2 )

(only the first result is easy)
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Good size for the Glass

Computability theory can be use to characterize exactly what can
happen.

Hochman-Meyerovitch 2010
Possible values for entropies of SFTs are exactly reals [with some
computability condition]

Meyerovitch 2010

Possible values for growths of SFTs are exactly nk where k is any real
[with some computability condition]

J.-Vanier 2015
Possible values for periodic points of SFTs are exactly subsets of N
[with some complexity condition]
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To understand these theorems, we need computability notions for
reals, closed sets, etc.
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Plan

1 Computability in Cantor Space

2 The simulation theorem

3 Examples
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Computability in other spaces

How to define computability in arbitrary spaces X ?

What is a computable real ?

What is a computable subshift ?

Find a definition of a general object, and try to impose computability
somewhere.
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Reals

How to define real numbers ?

As the completion of Q: r = limqn where (qn) is a Cauchy
sequence of rationals
By their decimal expansions r = x +

∑
i∈I pi/2i , x ∈ N, pi ∈ {0,1},

As Dedekind cut r = {q|q < r}.
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Definition
A real r is computable if there exists a recursive total function
f : Q→ Q s.t. |f (q)− r | < q

Definition
A real r is computable if there exists a recursive total function
f : N→ Q s.t. |f (n)− r | < 1/n

Definition
A real r is computable if its decimal expansion is computable (as a
function fom N to {0,1})

Definition
A real r is computable if the characteristic function of {q|q < r} is
recursive.

All definitions are equivalent
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Subshifts

What is a computable subshift ?

Subshifts are closed subsets of AZ

What is a computable closed subset of AZ ?

Limits of clopens.
Write C for a generic clopen, and [u] for the cylinder u.
Notice that clopen are countable, and easily in bijection with N.
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Closed subsets

Definition
X ⊆ AN is computable if there exists a total recursive function
f : N→ C s.t.

dH(X , f (n)) ≤ 2−n

(This is Hausdorff distance, Some special care is needed for the empty
set)

Definition
X ⊆ AN is computable if the function C → {0,1} s.t. f (C) = 1 iff C
intersects X is computable.
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Computable subsets

Definition
X ⊆ AN is computable if the function A? → {0,1} s.t. f (u) = 1 iff [u]
intersects X is computable.

Theorem
A subshift X ⊆ AZ is computable iff L(X ) is computable.
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What can we do with computable subsets ?

Notice that points x ∈ AN is just a function N→ A.

A point x is computable if x : N→ A is computable

Computable subsets X of AN have dense sets of computable points.

More precisely, the lexicographically least element of [u] ∩ X is
computable.
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Recursively enumerable closed sets

SFTs are not computable in general.

As we saw, L(X ) is usually not recursive, but only corecursively
enumerable (The set of patterns that cannot appear is recursively
enumerable).

We need a notion of a recursively enumerable closed set.

E. Jeandel, CASD, Part II: Cantor Spaces 16/38



Effectively closed set

Definition
X ⊆ AN is effectively closed if there exists a total recursive function
f : N→ C s.t.

X =
⋂
n

f (n)

Definition
X ⊆ AN is effectively closed if the function C → {0,⊥} s.t. f (C) = ⊥ iff
C intersects X is partial recursive
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Effectively closed subshifts

Definition
X ⊆ AZ is an effectively closed subshift iff D(X ) is recursively
enumerable.

Definition
X ⊆ AZ is an effectively closed subshift if X = XF for some recursively
enumerable set F .
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SFTs and Effectively closed subshifts

SFTs are effectively closed.

As we saw last time, the set of words that do not appear in X is indeed
recursively enumerable

Sofic shifts are effectively closed.

There is a converse
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The theorem

Theorem (Aubrun-Sablik [AS13], Durand-Romashchenko-Shen [DRS10])

For every n-dimensional effective subshift S, the n + 1-dimensional
subshift:

SZ = {y |∃x ∈ S, ∀i , j , yij = xi}

SZ = {y |all lines are equal to the same x ∈ S}

is sofic.
(That is, there exists a SFT X and an onto factor map f : X → SZ)
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Some notes

Every n-dimensional sofic shift is a n-dimensional effectively
closed shift
Every n-dimensional effectively closed shift is a n + 1-dimensional
sofic shift

This theorem explains a lot of the similarities between SFTs and
effective subshifts.

A proof by Hochman [Hoc09] with n 7→ n + 2.
Extended to n 7→ n + 1 by Aubrun-Sablik and
Durand-Romashchenko-Shen independently
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Consequences

There is not a lot of difference between a sofic shift and an effectively
closed shift.

To produce SFTs with complex behaviours, just produce effectively
closed shift with complex behaviours.
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Examples

Theorem (Hanf-Myers)
There exists a 2D SFT with no computable point

Just produce an 1D effectively closed shift with no computable points.
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Examples

How to produce an effectively closed shift with no computable points?

Lemma (Miller 2011)
Let un be a sequence of words over {0,1} s.t. un is of length n + 5.
Then the subshift of {0,1}Z that forbids all the un is nonempty.

(Cenzer-Dashti-King) Take un = fn(0)fn(1) . . . fn+5(n) to be the n + 4
first outputs of the n-th program on input 0,1 . . . n (many un will be
undefined)
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Entropy

Hochman-Meyerovitch 2010
Possible values for entropies of SFTs are exactly reals [with some
computability condition]

What are the computability conditions ?

What is the relation (in terms of computability) between the entropy of
X and D(X ) ?

We think about enumeration effectiveness: if you are given patterns in
D(X ) one at a time, what can you say about the entropy ?
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Entropy

Theorem

{p ∈ Q|p > h(X )} ≤e D(X )

Given an enumeration of the forbidden patterns of X , we can
enumerate all rationals that are bigger than the entropy of X .

Given n forbidden patterns of X :
We compute pn the number of locally admissible n × n patterns
that contain none of these forbidden patterns.
And we enumerate all rationals larger than log pn/n2
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Entropy

Suppose that X is effectively closed.

{p ∈ Q|p > h(X )} is recursively enumerable.

{p ∈ Q|p > h(X )} = {f (n),n ∈ N} for f total recursive

h(X ) = infn f (n) for f total recursive

And we can suppose f nonincreasing by taking g = mini<nf (i).
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Entropy

Definition
x is right recursively enumerable if x = infn f (n) for f total recursive

Proposition
Entropies of SFT and effectively closed shifts are right recursively
enumerable (nonnegative) reals.

Theorem (Hochman-Meyerovitch)
Entropies of SFT and effectively closed shifts are exactly the right
recursively enumerable (nonnegative) reals.
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Proof

Let Sλ ⊆ {0,1}Z that forbids all words w so that the density of 1 in
w is greater than λ: ( |w |1 > b|w |λc+ 1)
If λ is right recursively enumerable, this set of words is recursively
enumerable.
In every infinite word of Sλ, the upper density of 1 is less than λ,
and there are words where it is exactly λ (take a Sturmian word of
slope λ)
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From 1D to 2D

Use Aubrun-Sablik to obtain a 2D SFT S′λ that factors onto SZ
λ

Look carefully at the construction, and see that S′λ is of zero
entropy

Now we replace every symbol x that maps into 1 by two different
symbols x1, x2. Let’s call Xλ this new SFT.
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End of the proof

Let pn be the number of patterns of size n in Xλ

pn ≤ p′n2λn2

where p′n is the number of patterns of size n in S′λ. ( There are at most
λn2 positions where we have to choose between x1 and x2)

pn ≥ 2λn2

(If we start from a Sturmian word of density λ, we have at least λn2

positions where we have a choice to make.)

lim
log pn

n2 = λ

(lim log p′
n

n2 = 0 because S′λ is of zero entropy).
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Periodic points

What can we say about the set of periodic points ?

We think about enumeration effectiveness: if you are given patterns in
D(X ) one at a time, what can you say about the set of periodic points ?
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Periodic points

{p|X has no point of period p} ≤e D(X )

In particular if X is a SFT, the set of p s.t. there is a point of period p in
X is co-recursively enumerable.
Proof ?
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Easy theorem

Theorem
L is the set of periods of a 1D effectively closed shift (2D sofic shift) iff
L is co-recursively enumerable.

Forbid 10n10m and 0m10n1 for n < m.
Forbid 10n1 for n 6∈ L.

What about SFT ?
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SFTs

We cannot use the Aubrun-Sablik construction

The preimage of a periodic point is never a periodic point in their
construction
We cannot realize arbitrary corecursively enumerable languages
with periodic points of SFTs

Indeed
In a n × n in a SFT we could only fit O(n) steps of a Turing
machine
In dimension 2d , we could fit O(nd) steps of a Turing machine.

⇒ periods of SFTs are characterized by complexity rather than
computability notions.
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