
Steel Threads: Framework for Developing Software System Architecture

Sada Narayanappa
Engineering Process and Operations

Jeppesen, Inc.
sada.narayanappa@jeppesen.com

Wan D. Bae
Mathematics, Statistics and Computer Science

University of Wisconsin-Stout
baew@uwstout.edu

Shayma Alkobaisi
Faculty of Information Technology
United Arab Emirates University
shayma.alkobaisi@uaeu.ac.ae

Narayan Debnath
Computer Science Department

Winona State University
ndebnath@winona.edu

ABSTRACT
A steel thread is a set of logically grouped scenarios that
identifies the execution path through the system to meet
business objectives and to demonstrate executable architec-
ture. Steel threads are often used in the context of defining
a software system architecture. Although there have been
references to steel threads in software engineering literature,
it is hard to find literature of steel threads in books or among
the research community. This paper presents the definition
of steel threads and contexts under which they are applicable
in software development life cycle. The applicability of steel
threads is also presented through a case study of a software
system.

1. INTRODUCTION
Software architecture has emerged as a crucial part of

a software system design process. The development of a
new software system is an overwhelming task. In a typical
scenario of software system architecture, high-level require-
ments are handed over to a development team to define and
create the solution. There are many risks involved with giv-
ing too little thought to the overall structure of the solution
and how the product can be extended and maintained in
the future. Any solution of a reasonable size or complexity
requires some initial analysis and design on how the solu-
tion should be implemented. Without guidelines, a solu-
tion might require extensive rework in subsequent processes
which creates unmanageable implementations. Also, a tech-
nically complex solution might face difficulties to describe
the essential elements of the system resulting in maintenance
inefficiency as the system evolves. Figure 1 shows a cycle of
developing a software system that is influenced by business
requirements, technical environment, architects’ experience
and architectures. A business manages this cycle to handle
growth, to expands its enterprise area, and to take advantage
of previous investments in architecture and system building
[2].

Over the last few years, as many tools and technologies
have been developed, an approach called Steel Thread (ST)
has been used in developing software systems. A steel thread
can be considered as a software engineering tool that de-
fines a fundamental path of execution in a software system.
Steel threads focus on the basic behavior or primary flows
(core usages) of the system and typically ignore the alter-
nate and exceptional scenarios [3]. The main advantage of
this approach is that it is easier to describe a complex sys-
tem with a set of fundamental paths. Steel threads could

describe a system without too much complication and help
people to understand the basic system. In addition, this
approach offers an effective way to trace the development
through complex implementation both for comprehension
and evaluation.

• Requirements

• Technical environment

• Architects’ experience

Architect(s)

Architecture

Software System

Figure 1: The architecture business cycle

While steel threads have been used in software develop-
ment, little research has been done on formalization of steel
threads and applicability in a real system. This paper dis-
cusses the definition of steel threads and presents their con-
texts and use in software system development. The applica-
bility of steel threads are also discussed in detail. A case
study of steel threads for an air traffic control system shows
how steel threads are constructed in a software system.

Steel threads give architects the ability to define and com-
municate a solution while creating artifacts that become
part of the solution. Similar to use case specifications, steel
threads are identified in the early stage of software devel-
opment to address critical software system concerns. The
term is derived from the idea that primary functionality of
a software system is a “thread” that runs throughout the
system, and that the importance of this thread’s role in the
system makes it strong like “steel” [1]. Little regard is given
to exception logic or other functionalities that are not fun-
damental to the nature of the system. When coded, a steel
thread is a thread of implementation that weaves through
the system to realize its functionality. Figure 2 illustrates
the main idea of steel threads in software system develop-
ment.

The rest of the paper is organized as follows: In Section 2,
we provide background and related work. Section 3 presents
overview of steel threads. Section 4 discusses contexts of
steel threads in software systems. We discuss identification
of scenarios in the development process of steel threads. We

Requirements Architecture

General

Detailed

Figure 2: Steel Threads with business requirements
and software architecture

also discuss roles of steel threads as well as their usability
and applicability. Section 5 presents a case study of a sys-
tem. Finally, Section 6 concludes the paper.

2. RELATED WORK
The architectural view of a system is abstract, separating

from details of implementation, algorithm, and data and
concentrating on the behavior and interaction of system el-
ements [2]. A software architecture is developed as the first
step toward designing a system. The relationships among
business goals, requirements, architects’ experience, system
environments, and architectures form a software system life
cycle with feedback loops. Software processes in the archi-
tecture business cycle are the processes of software develop-
ment activities. These activities include the following [2]: 1)
creating the business, 2) understanding the requirements, 3)
creating or selecting the architecture, 4) documenting and
communicating the architecture, 5) analyzing or evaluating
the architecture, 6) implementing the system based on the
architecture, 7) Ensuring that the implementation conforms
to the architecture.

An approach that minimizes system risks to particular
implementation and focuses explicitly on the functionality
of the system is required. Accordingly, the high-level ar-
chitecture has been developed in line with the principles of
the model driven architecture [4], promoting clarification of
“what” the system is required to do, rather than “how” it is
to do it. The essential logic of the system can be captured
in a Unified Modelling Language (UML) [5] model that is
independent of implementation technology and platform.

The term steel threads is often used in software system
development. In [1], a URL link in Wikipedia, describes
steel threads as“construct that indicates the most important
path(s) of execution in a computer system”. However, this
lacks many aspects such as, who, what, how, when, etc.
Literature search to understand steel threads turns up slim
to non results.

3. OVERVIEW OF STEEL THREADS

3.1 What are Steel Threads?
Steel threads are defined as a set of logically grouped

objectives that comprise an end-to-end or top-to-bottom
thread of execution through a system, that satisfy chosen

business objectives, and do not consider alternate or excep-
tional scenarios. It is often considered as a collection of use
case scenarios that represent the functionality of the pro-
posed system. A steel thread includes that portion of the
system that satisfies these scenarios. These set of scenarios
are chosen to address the project concerns. The primary
goals of steel threads are to:

• Mitigate and provide mechanism for addressing tech-
nical risks associated with the architecture

• Demonstrate scenarios that are critical to both the cus-
tomer and the overall system

• Establish foundations on which the proposed system
is built

Suppose that the system being developed is integrating
with external systems such as billing, payment, and shipping
systems: An online bookstore system that interacts with three
external systems such as billing system, credit card service,
and shipping service systems may identify many use case
specifications.

Online Book Store

 <<external>>

Credit Card System

 <<external>>

Billing System

 <<external>>

Shipping System

Customer

Orders

Electrronic Payments

Shipping Information

Billing Information

Credit card Information

Figure 3: Architecture example: online bookstore

This is a typical system as encountered in many software
environments. Figure 3 illustrates the system contexts of
the architecture for this online bookstore system. We omit
the full description of the system and rather focus on the
relationships with the external systems. Customers order
books online and during the checkout process, a billing sys-
tem provides a payment after computing discount, taxes,
etc. Customer provides the credit card payment informa-
tion which is processed by the credit card service system. If
the credit card transaction is complete, a message is sent to
shipping department. Finally, the books will be shipped to
the customer.

There are possible dependencies among these systems that
must be carefully considered. Proving the initial system de-
velopment with external systems will help to establish a solid
foundation and communication to external system architects
and project managers - this facilitates early integration and
resolution of any quality attributes of the external systems
such as availability, reliability, security, etc. A listing of steel
threads for the above system may consist of the following
scenarios:

ST1 : A customer orders books through online

ST2 : A billing system computes the final bill

ST3 : A credit card service system completes a transaction

ST4 : Completed payment triggers a shipping service sys-
tem to ship the items

It considers the risk of external systems correctly acting to
triggered events; it ignores the scenarios of checking the in-
ventory before collecting the payment or verifying the des-
tination address of the customer or how the customer is
created and authorized to order books.

3.2 How are Steel Threads different?
This section addresses the common question that often

arises, “how are steel threads different from requirements or
use cases?”. A model of software development [8] is a par-
tial view of the well-known spiral development model. It fo-
cuses explicitly on requirements and architecture, allowing
for their concurrent and independent evolution. Software
system development proceeds with successive iterations of
both these concerns, leading to increasingly detailed require-
ments and refinement of the system architecture.

In short, steel threads need not be always different from
requirements; steel threads are subset of requirements. They
represent the minimal set of requirements, which when coded
raise the confidence level of delivering a system. They aid
in clarifying or addressing technical challenges which may
be because the team is not familiar with the technology or
the problem domain is new and the team does not have
experience in delivering such a system. Steel threads form
significant requirements which drive the architecture. For
example, a requirement that says, that customers will be
able to access the system remotely from anywhere in the
world via a browser, this necessitates the need for an appli-
cation on the internet (given the prevalence of such approach
for current technology).

Steel threads often ignore the trivial cases to keep the fo-
cus on developing a central functionality that once built,
other functionalities can be wrapped around it mechani-
cally or also by junior developers. Steel threads need not
be limited functional characteristics; they can include non-
functional aspects as well if they constitute a risk that must
be addressed by the architecture. It should also be noted
that steel threads need not be always be created from scratch.
If a use case satisfies the goals of steel threads, this can be
considered as one of the steel threads. Steel threads also
eliminate the need for constant prototyping the system to
demonstrate value to customers in which teams never deliver
a real system [9].

4. CONTEXTS OF STEEL THREADS

4.1 Identification of Scenarios
A steel thread is a technical proof of concept that consid-

ers all possible technologies in a solution [6]. Steel threads
are stated in the context of a use case and represented by a
sequence diagrams in UML. The scenarios for a steel thread
are picked from one or more use cases rather than inventing
new ones. Steel threads should not be confused with pro-
grams executing in a thread of control (as in multi-threaded
applications). Identification of the business objectives that
comprise a steel thread considers two factors: the technical
risk associated with these scenarios and the areas of impor-
tance to the customer.

During discovery of requirements, many factors constitute
to the risk. It is critical to move between problem and solu-

tion space during the architecture and requirements discov-
ery. This also necessitates the need for architect as a critical
lead is discovering requirements. This approach has several
draw backs in discovering some requirements: 1) require-
ments that are technically infeasible - results in repeated
work to collect new set of requirements; Repeated misun-
derstanding will result in customer dissatisfaction or confu-
sion, 2) requirements that are outdated by newer approaches
due to advanced technology, 3) requirements if slightly al-
tered will not affect the system objectives but will result in
huge saving in development cost due to reuse of internal as-
sets. Other extreme is to stay in focus on solution domain
while little attention to problem domain. This again causes
projects to fail as the solution always takes the form of the
teams past experience and approaches; thus offers fewer in-
novations and address to user concerns.

There could be many factors that play to determine what
constitutes a steel thread such as teams experience with the
problem domain, technology expertise, maturity and under-
standing of external systems, etc. The criteria used to iden-
tify steel threads are mainly to identify and mitigate tech-
nical risks. In addition, one may consider flows that are
critical to customers. Once steel threads are implemented
they form the basis upon which the other functionality is
wrapped around to continue development. As a summary,
pitfalls of identifying steel threads are as follows:

• Identifying scenarios that do not relate to any existing
use cases

• Identifying scenarios when implemented do not yield
reusable artifact

• Identifying scenarios that do not offer any useful struc-
ture for testing

• Identifying scenarios that waste development time

• Identifying scenarios that do not offer higher level of
abstraction to understand the system

• Overlooking existing use cases that can serve as a steel
thread

4.2 Roles in System Development
Steel threads serve many purposes at various stages of

system development and also during system evolution.
First, identifying the steel threads of a software system

reduces technical and project risks. Steel threads allow the
development team to figure out any technical issues early in
the project life cycle. Having steel threads of the software so-
lution handed off to the development team eliminates much
ambiguity as to the expectations of the development team.
Steel threads facilitate developers to build and verify key
system functional and nonfunctional requirements early in
the project life cycle and to mitigate or resolve risks. This
permits modification of the architecture design, if necessary,
prior to committing to a proposed solution and implemen-
tation of the system. The approach of steel threads builds
what is a main success scenario for a significant objective-
based requirement.

When the development of steel threads is complete, re-
maining functionality and alternate scenarios are wrapped
around the basic structure with higher confidence and un-
derstanding of the expected solution. Hence steel threads

provide a framework for software system architecture. The
development environment including software configuration
management and continuous integration capabilities is es-
tablished for the software development team. Steel threads
can also be used to evaluate the architecture and design to
assess its effectiveness.

Further more, steel threads can be used as a tool to com-
municate with various stakeholders. An effective architect
plays multiple roles on any given project. Beyond defining
a solution to a software system for a business problem, an
architect’s responsibilities often include communicating the
solution to multiple stakeholders: business sponsors, poten-
tial end users, and development organizations. Usually steel
threads are represented similar to how requirements are rep-
resented in the project. The advantage of representing them
as such is to have consistent way of understanding the re-
quirements by the project. This makes the communication
between architects and stakeholders consistent and efficient.
In this paper, we assume that the requirements are captured
using use case specifications [2, 7], which are more widely
used.

4.3 Usability and Applicability
Defining and developing steel threads offers many advan-

tages to a software system development. The following ad-
vantages summarizes and illustrates the usability of steel
threads:

• Defining the basic structure of implemented solution
and capturing the essential elements and functionality
of the system

• Early identification and mitigation of technical risks

• Enabling demonstration of systems end-to-end critical
functionality to stakeholders and facilitating means of
communicating of architecture to detailed design and
implementation

• Providing a basis for validating estimates for the tasks
associated with implementing the steel threads, and
applying the new information to the other estimates

• Serving as a concrete example for software test disci-
pline to plan test verification and validation activities

• Providing a proof of architecture concept

• Providing a reference architecture with deliverables

• Providing a reusable and tangible architecture

• Providing a basis for many other systems to be built
from basic functionalities

• Serving as a mechanism to get a higher level of confi-
dence of the proposed architecture

There might be some steel threads to identify and miti-
gate critical and technical risks in the proposed solution. For
example, the scenario when a large number of users are con-
currently ordering books. It is possible that some Use Case
Specifications, by omitting alternate scenarios, may serve as
a steel thread. In these cases, it is best to use the existing
specification as a steel thread.

Steel threads are used throughout the software system de-
velopment. Their applicability can be found in the following

processes: 1) requirements, 2) architecture, evaluation, and
proof of concept, 3) detailed design, 4) implementation, 5)
test, 6) system evolution.

5. A CASE STUDY: AIR TRAFFIC CONTROL
The case study of steel threads presented in this section

demonstrates selective business functionality by implement-
ing an executable architecture. Steel threads are to demon-
strate critical business objectives, which are mainly related
“end-to-end” information flows. This case study identifies
steel threads that are influenced by the context of customers,
development organization skills, risks, architect skills, do-
main knowledge (in this case author’s domain knowledge),
etc. A variation in these influencing factors may result in
identification of different set of steel threads. Therefore,
the task of identifying steel threads varies depending on the
system - its applicability must be evaluated for the given
context.

5.1 ATC System Description
The example application for this case study is taken from

[2] which describes Initial Sector Suite System (ISSS) used
for the Air Traffic Control (ATC) system. The system de-
sign goal for ATC is to provide effective and efficient way
to monitor and control air traffics for all types of aircrafts.
High availability and high performance are the main objec-
tives in the system.

1. Ground Control

2. Tower

5. Ground Control

TRACON

3. En Route

Sector 1

4. Tower

3. En Route

Sector 2

Figure 4: Overview of ATC

Figure 4 illustrates the overview of ATC. As an aircraft
plans its route from an airport to another, it is monitored
and controlled (or guided) by various entities. Ground Con-
trol monitors the movement of the aircraft while it is on the
ground, Tower Control monitors the aircraft during its tak-
ing off until it leaves the Terminal Control Area, a cylindrical
section of airport centered at the airport, and En route Cen-
ters monitors the aircraft during its en route. The aircraft is
handed over from one control to another as it leaves and en-
ters areas of the respective controllers (ground, tower, and
en route). In addition, the aircraft could be handed over
from a sector to another sector (a variable section of the
enroute section) where each sector may have one to four
control stations with at least two controllers; the first one

monitors and manages safe operation of aircrafts, and the
second provides necessary data to the first. ISSS initially
plans to for en route centers later to be extended to ground
and tower as all these systems share many components.

5.2 ATC Risks and Business Objectives
Some of the architectural (technical) risks in ATC can be

derived from the description. These risks are influencing
factors in identifying steel threads although not all risks can
be mitigated by steel threads.

• System may not meet the likings of Controllers (end-
users of ATC) and who also have the ability to reject
the system.

• Inability to upgrade or update the system due to its
high availability requirement (of only allowable down-
time of less than 5 minutes per year)

• Inability to meet the concurrency (and hence perfor-
mance) requirements (ability to handle up to 2400 air-
crafts both computationally and network band width)

• Inconsistent components - given the size of the overall
system, it is challenging to assure consistent quality of
components (or subsystems) and adoption of common
development process across multiple vendors

• Budget cuts resulting in only a subset of functionality
be required by customer

• Given the nature of its application, safety and security
issues storm the system requirements, development,
and compliance.

• Backward incompatibility of the interfaces and designs
to existing systems

Notice, although budget cut may not appear as a technical
risk, it can be partly addressed by reducing the maximum
depth of the dependencies among the software elements, in
other words, decomposing the system into smaller self con-
tained functional subsystems. A steel thread is identified
such that it lies within these functional subsystems so as to
influence and isolate development and testing within these
subsystems.

A couple of high level business objectives need to be con-
sidered for steel threads for ATC. Business objectives that
take into account influencing factors such as risks and skills
are identified in order to further refine and constrain the
scope of steel threads. Notice that these objectives may vary
from overall system principles because the objective of steel
threads is to address risks and to demonstrate executable
architecture by providing a framework for other executable
threads to be woven around it to build the completed sys-
tem. The following enumerates a number of very high level
objectives that steel threads to fulfill:

BO1 : Demonstrate basic functionality

BO2 : Create a core fundamental framework around which
the identified subset of the system relies upon

BO3 : Demonstrate the peak performance that can be achieved
(concurrent flight data and radar handling)

BO4 : Demonstrate the fail over mechanism from primary
to secondary

BO5 : Demonstrate the security and safety aspects of the
system

In this case study, we have the following contexts and as-
sumptions about the system: 1) The system is developed by
a number of external vendors, who work under one primary
vendor and who will assemble the overall system, 2) The de-
veloping organizations may not have skills and experience in
developing similar systems in the past - furthermore, these
organizations will not have training facility to build those
skills. Therefore, quality must be tested before acceptance,
3) If during the demonstration of steel threads, the system
proves to be infeasible or unfit for the purpose, then the
customer will choose to halt the project as long as it needs
to rectify the situation by identifying new suitable require-
ments, 4) The hardware and software for the system devel-
opment and deployment are identical to the host system and
available for developing organizations.

5.3 Steel Threads for ATC
Based on the risks, business objectives and assumptions,

we identify four high level steel threads for the ATC sys-
tem. These steel threads may appear trivial and ignore
many alternate scenarios that is normally encountered in
the requirements.

ST1 : Steel thread that demonstrates acquisition of radar
surveillance data and data visualization on controller
screen.

ST2 : Steel thread that demonstrates handoff from one sec-
tor to another sector. This uses the already acquired
data (which may be cached) within the same controller
center.

ST3 : Steel thread that demonstrates the replay functional-
ity of the system by replaying the consoles and commu-
nication. In addition, this demonstrates the sufficient
logging, configuration of logging, exception and error
logs.

ST4 : Steel thread that demonstrates the archival and cache
clean up when the aircraft leaves the area controlled
by the enroute center.

Due to space limitation, we present an overview of ST1: Ac-
quisition of Surveillance Data but omit its detailed analysis.

ST1: Acquisition of Surveillance Data
This steel thread defines a scenario that the system ac-

quires radar surveillance data and displays the data in plan
view on controller screen. In addition the steel thread in-
cludes that data controller retrieves relevant flight plan data
strips. Business objectives met are BO1 and BO2. This
steel thread does not need to take into consideration fail
over to secondary host. The surveillance data is acquired
for all flights within the specified En Route center. How-
ever, flight plan data is available for limited flights. The
system is initialized and ready for operations, which means
host computer has the access to hardware to acquire surveil-
lance data and flight plan. The contexts of this steel thread
are as follows:

1. The system is in operation and continues to monitor
the data from surveillance equipments

2. Upon data detection from surveillance equipment, the
controller is able to see the surveillance data in plan
view on the controller screen (see Figure 5)

3. The flight plan information is also available for display;
Data Controller can access the flight plan for those
aircrafts within the controller’s scope

4. When the aircraft leaves one sector to another, the
related data migrate to the corresponding display

5. When the aircraft leaves the area of controller, it is
disappeared from the controller display

6. Using the display, controller can monitor the safe sep-
aration of aircrafts

DAL 30G

H/B765/E

798

5177

P1815

377

SAN./LFK

32.456

Figure 5: Sample view of controller screen

Implementing this steel thread results in partial realiza-
tion of deployment architecture with single host, network-
ing elements, and integration with other external systems.
It also establishes and validates Code View architecture. In
the layered view, the implementation passes though every
layer. For example, device drivers, network drivers in kernel
extensions layer; prepare messages package in shared mem-
ory (layer above kernel extensions layer). In addition, this
steel thread provides the basic functionality through appli-
cation layer. Figure 6 is an example of a system where the
steel thread touches various modules in layered architecture.
Other steel threads are similar in that they are woven around
the architecture; eventually, the over all system is woven
around these basic steel threads.

6. CONCLUSIONS
Steel threads have been used in many contexts through-

out software development life cycle in industry. However,
a clear definition, well defined application and areas of use
in software development remained undefined and unclearly
explained in the literature. In this paper, we presented defi-
nitions of steel threads as an effective tools for building soft-
ware systems and discussed the context of steel threads. We
illustrated applicability of steel threads through a case study
where steel threads are software engineering constructs that
can define fundamental paths of execution in a complex soft-
ware system though a set of logically grouped scenarios.
We described the system, defined the architecture risks and
objectives and finally provided steel threads context of the
system. We plan to investigate on defining steel threads for
common business requirements. Consequently, new tools for
reuse of existing steel threads can be introduced.

Steel

Thread

Figure 6: Steel Thread - weaves though various lay-
ers in architecture

7. REFERENCES
[1] Steel thread: Wikipedia url.

"http://en.wikipedia.org/wiki/Steel_thread", 2009.

[2] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice, SEI series in software
engineering. Addison Wesley, 2003.

[3] M. Fergal. Managing software projects with
business-based requirements. IT Professional,
4(5):18–23, 2002.

[4] O. M. Group. The model driven architecture.
"http://www.omg.org/mda/".

[5] O. M. Group. Unified modelling language specification
v2.1. "http://www.omg.org/spec/UML/2.1.2/", 2007.

[6] J. Hofstader. Building distributed application:
Model-driven development - msdn url. "http:
//msdn.microsoft.com/en-us/library/aa964145.aspx",
2009.

[7] N. C. N.C. Nc and C. Gryce. Descending the twin
peaks: Requirements and architecture in the egso
project. "http:
//www.nesc/ac.uk/events/ahm2003/AHMCD/pdf/086.pdf",
2003.

[8] B. Nuseibeh. Weaving the software development
process between requirements and architectures, 2001.

[9] N. Rozanski and E. Woods. Software Systems
Architecture: Working With Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley
Professional, 2005.

