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Abstract. A unified and powerful approach is presented for devising polynomial approximation schemes 
for many strongly NP-complete problems. Such schemes consist of families of approximation algorithms 
for each desired performance bound on the relative error c > 0, with running time that is polynomial 
when c is fixed. Thougb the polynomiality of these algorithms depends on the degree of approximation 
e being fixed, they cannot be improved, owing to a negative result stating that there are no fully 
polynomial approximation schemes for strongly NP-complete problems unless NP = P. 

The unified technique that is introduced here, referred to as the shifting strategy, is applicable to 
numerous geometric covering and packing problems. The method of using the technique and how it 
varies with problem parameters are illustrated. A similar technique, independently devised by B. S. 
Baker, was shown to be applicable for covering and packing problems on planar graphs. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu- 
merical Algorithms and Problems-geometricalproblems and computations 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Covering, packing, covering points in the Euclidean space, image 
processing, VLSI, shifting strategy, worst case analysis of heuristics, polynomial approximation scheme 

1. Introduction 
Polynomial approximation schemes are described in this paper for several strongly 
NP-complete problems that have important applications in the areas of robot 
motion planning, VLSI design, image processing, and location. These problems 
appear in the contexts of covering and packing with convex objects. One of them 
is the square packing problem, which comes up in the attempt to increase yield in 
VLSI chip manufacture. For example, 64K RAM chips, some of which may be 
defective, are available on a rectilinear grid placed on a silicon wafer. 2 x 2 arrays 
of such nondefective chips could be wired together to produce 256K RAM chips. 
In order to maximize yield, we want to pack a maximal number of such 2 X 2 
arrays into the array of working chips on a wafer. (See the result of Berman et al. 
[2], reviewed by Johnson [6], and the NP-completeness result of Fowler et al. [3].) 
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Another problem is covering with disks, that is, given points in the plane, to 
identify a minimally sized set of disks (of prescribed radius) covering all points. 
One of its applications is in the area of locating emergency facilities such that all 
potential customers will be within a reasonably small radius around the facility. 
(The complexity results for this problem are reviewed in [6].) 

A third problem considered is covering with squares or (rectangles), which has 
an important application to image processing, discussed in Tanimoto and Fowler 
[7]. Here one wants to store information in square “patches” such that all points 
with information (“pixels”) are contained in at least one of the patches. The general 
problem can be described as: Given points in a Euclidean space (in this application, 
on a grid), find a minimally sized set of squares of prescribed size covering all those 
points. 

None of the above problems was reported to have a bounded error ratio 
approximation algorithm. We shall call an algorithm a b-approximation, 6 > 0, for 
a certain problem if the error of the value of the solution delivered by the algorithm 
divided by the value of the optimal solution does not exceed 6. Obviously, we 
would like to identify a &approximation algorithm such that 6 is as small as 
possible. In some cases one can specify a family of algorithms such that for each 
E > 0 there is an c-approximation algorithm in the family that solves a given 
problem instance within relative error 6. Such a family is called an approximation 
scheme. The running time of an c-approximation algorithm will increase mono- 
tonically with l/t. If the functional dependence of the running time on the size of 
the input and I/C is polynomial, then the scheme is said to be fully polynomial; if, 
on the other hand, it is polynomial only in the input size, the scheme is called 
polynomial. 

All the problems described and consequently their extensions are NP-complete 
in the strong sense (the reader is referred to Garey and Johnson’s [4] comprehensive 
review of this concept). As such, there are no fully polynomial approximation 
schemes for these problems, unless NP = P ([4, theorem 6.81). This negative result, 
however, does not exclude the existence of a polynomial approximation scheme 
for these problems, that is, a family of algorithms such that for any specified 
relative error E > 0 there is an c-approximation algorithm in the scheme that is 
polynomial. Though such schemes are conceptually feasible, their existence has 
rarely been reported. 

Our main results are the construction of polynomial approximation schemes for 
the above problems which, given the negative result above, are the best possible 
results of this type. We present a unified methodology that is helpful for numerous 
geometric covering and packing problems and could potentially be applicable to 
problems beyond this context. We call this fundamental technique the shifting 
strategy and outline the necessary conditions for its applicability. A similar tech- 
nique has been independently discovered by Baker [I]. Her technique is applicable 
to planar graphs, whereas ours applies to problems defined in Euclidean space; but 
our concepts of strips of bounded width and shifting are analogous to the concepts 
of bounded outerplanarity and shifting used by Baker. 

The shifting strategy is described and the “shifting lemma” is proved in Section 
2. We then proceed in Section 3 with its application to problems of covering with 
balls and derive a polynomial approximation scheme for this case. We further 
explain the behavior of such schemes for problems of covering with arbitrarily 
shaped objects in higher dimensional spaces. In Section 4 we describe the applica- 
tion to packing problems with convex objects, and we summarize our results in 
Section 5. 
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Throughout the paper the following notation will be used. ZA denotes the value 
of the solution delivered by algorithm A. An optimal solution set is denoted by 
OPT and its size b:y ] OPT 1. 

2. The Shifting Stra:tegy 
The shifting strategy allows us to bound the error of the simple divide-and-conquer 
approach by applying it repetitively and selecting the single most favorable resulting 
solution. This approach was successfully used for problems of covering with 
nonconvex objects as well [5]. In this section, however, we illustrate the application 
of the shifting strategy for covering with planar balls (disks). 

Let the set iV of the n given points in the plane be enclosed in an area I. The 
goal is to cover these points with a minimal number of disks of diameter D. Let 
the shifting parameter be 1. In the first phase the area I is subdivided into vertical 
strips of width D, where each strip is left closed and right open. Groups of I 
consecutive strips, resulting in strips of width 1-D each, are considered. For any 
fixed subdivision of I into strips of width D, there are I different ways of partitioning 
I into strips of width 1-D. These partitions can be ordered such that each can be 
derived from the previous one by shifting it to the right over distance D. Repeating 
the shift 1 times we end up with the same partition we started from. We denote the 
1 distinct shift partitions that result by &, S2, . . . , S,. 

Let A be any algorithm that delivers a solution in any strip of width 1-D (or less). 
For a given partition Sip let A(Si) be the algorithm that applies algorithm A to each 
strip in the partition Si and outputs the union of all disks used. Such a set of disks 
is clearly a feasible solution to the global problem defined on I. This process of 
finding a global solution is repeated for each partition Si, i = 1,2, . . . , 1. The shift 
algorithm SA, defined for a given local algorithm A, delivers the set of disks of 
minimum cardinality among the 1 sets delivered by A(S), . . . , A(S). 

Let the performance ratio of an algorithm B be denoted by rE, that is, rB is 
defined as the supremum of Z’/] OPT ] over all problem instances. 

LEMMA 2.1 (THE SHIFTING LEMMA). 

1 
rsA 5 rA 1 + - , ( ) 1 (2.1) 

where A is a local algorithm and 1 is the shifting parameter. 

PROOF. We produce an upper bound on the sum of errors caused by all 
algorithms A(Si) for i = 1,2, . . . , 1. 

By the definition of rA we have 

ZA(S,) 5 rAeJzs. 1 OPTJ ] , 
I 

(2.2) 

where J runs over all strips in partition Si and ] OPTJ ] is the number of disks in 
an optimal cover of the points in strip J. 

Let OPT be the set of disks in an optimal solution and OPT”‘, . . . , OPT”’ the 
set of disks in OPT covering points in two adjacent 1. D strips in the 1, 2, . . . , 1 
shifts, respectively. It can easily be seen that 

c. IOPT,] 5 IOPT] + IOPT@]. 
JinSi 

(2.3) 

There can be no disk in the set OPT that covers points in two adjacent strips in 
more than one shift partition. Therefore, the sets OPT”‘, . . . , OPT(‘) are disjoint 
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and can add up to OPT at most. It follows that 

ii1 (IOPT + lOPT’“1) I (, + l).lOPTl. 

Expressions (2.3) and (2.4) imply 
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(2.4) 

min 2 IOPTJI ~~~I(JIsilOP’Gl)~(l +i) IOfll- (2.5) 
i=l,...,/ fins, 

Combining inequality (2.5) with (2.2), we obtain 

1 
2’~ = min ZA(‘J 5 rA. 1 + - .lOPTl, 

i=l,...,l ( ) 1 (2.6) 

which establishes (2.1). Q.E.D. 
The local algorithm A may itself be derived from an application of the shifting 

strategy in lower dimensional space. Repetitive applications of this type yield an 
approximation scheme as described in the following section. 

3. Polynomial Approximation Schemes for Covering Problems in Arbitrary 
Dimensions 

We first illustrate in Theorem 3.1 the method of repetitive applications of the 
shifting for the problem of covering with balls in a d-dimensional space. The 
remainder of this section consists of a generalization of this concept for other 
convex objects. 

THEOREM 3.1. Let d 2 1 be some finite dimension. Then there is a polynomial 
time approximation scheme Hd such that for every given natural number 12 1, the 
algorithm Hi’ delivers a cover of n given points in a d-dimensional Euclidean space 
by d-dimensional balls of given diameter D in O(ld(l. 4)d.(2n)d(tJa)d+‘) steps with 
performance ratio 5 (1 + l/l)4 

PROOF. The considered problem is NP-complete only for d > 1. For d = 1 one 
can actually compute an optimal solution in linear time with the following 
algorithm: We always place the next interval (i.e., l-dimensional ball) with its left 
end at the leftmost point that is not yet covered. 

For d = 2 and fixed 1 L 1 we use two nested applications of the shifting strategy 
from Section 2. We first cut the plane into vertical strips of width 1. D. Then, in 
order to cover the points in such a strip, we apply the shifting strategy to the other 
dimension. Thus, we cut the considered strip into squares of side length I.D. We 
find optimal coverings of points in such a square by exhaustive search. With 
(1. J2)2 = 212 disks of diameter D we can cover an 1. D x 1. D square compactly; 
thus we never need to consider more disks for one square. Further, we can assume 
that any disk that covers at least two of the given points has two of these points on 
its border. (For disks that cover only one point the following estimate holds 
trivially.) Since there are only two ways to draw-a circle of given diameter through 
two given points, we only have to consider 2. (2”) possible disk positions, where fi 
is the number of given points in the considered square. Thus we have to check at 
most O(fi2”‘Ja2 ) arrangements of disks. We specify the position of each disk by its 
center. In order to check whether an arrangement of disks is a feasible cover of the 
vi points in the square, we need to determine for each point whether it is within 
a distance of at most D/2 from one of the centers. Such a check will require 
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O(l* . fi) steps, with the assumption that we can determine in one step the distance 
between two points on the plane or the center of a disk with the necessary precision. 
(Note that it is possible to speed up that process by sorting the disk centers in O(l*) 
prespecified subsquares of the region and then determining in which of the 
subsquares there could be the potential covering disk by binary search in time 
O(log I).) The two nested applications of the shifting strategy add another factor 1’ 
to our global time bound. 

For d > 2 one proceeds analogously with d nested applications of the shifting 
strategy. Q.E.D. 

We have considered in Theorem 3.1 the problem of covering given points with 
a minimal number of balls of given size. The method of Theorem 3.1 can easily 
be generalized to y:ield approximation schemes for problems where one covers with 
objects other than balls. For a fixed type of object (of arbitrary fixed shape) we 
define D as the maximum diameter of such an object. In a manner similar to 
Theorem 3.1 we cut the considered d-dimensional space in a number of different 
ways (“shifting”) into d-dimensional cubes with sides of length 1-D. One can always 
find a local algorithm that proceeds by enumeration in the same way as the 
algorithm for balls in Theorem 3.1. But now the number of objects of the considered 
type that are needed to cover a d-dimensional cube with sides of length 1.D will 
depend on the ratio between D and the maximal d such that a d-dimensional cube 
with sides of length b is contained in a covering object of the considered type. The 
running time of the resulting approximation algorithm Hj’ will depend exponen- 
tially on this ratio D/b. For instance, for objects with known orientation the 
expression (I. a)d in the exponent will be replaced by (I-o/fi)d. This ratio O/d is 
usually of interest also in other contexts. Note that, e.g., for rectangles of 
size a x b in two dimensions this ratio is closely related to the “aspect ratio” 
max(a/b, b/a). We have shown in another paper [5] that in at least one important 
case one can eliminate the ratio o/a from the exponent of the running time by 
replacing the local enumeration algorithm by another approximation scheme. 

In certain applications the covering problem is defined in terms of objects with 
fixed orientation. This is the case, for instance, with the covering with squares 
problem in the context of image processing [7 1. This additional constraint simplifies 
the problem in that the trick illustrated in the following corollary often suffices to 
eliminate O/b from the exponent of the running time. 

COROLLARY 3.2.. Consider the problem of covering n given points in d-space 
with a minimal number of rectilinear blocks (the sides of which have given lengths 
D,, . . . , Dd) oriented with sides parallel to the axes. There is a polynomial-time 
approximation scheme Hd such that for every given integer 1 2 1, the algorithm 
H;’ delivers a cover in O(ld. n21d+‘) steps with peformance ratio d (1 + l/l)d. 

This corollary is proved in the same way as Theorem 3. i, except that the cuts 
orthogonal to the I’th axis are introduced at a distance 1. Di from each other. 

4. Application of the Technique to Packing Problems 
In a packing problem one wants to place without overlap a maximal number of 
objects of given shape with a given area. Since the error analysis of the shifting 
strategy remains true for such problems, we can use algorithms similar to those in 
Section 3. We consider as an example the problem of packing with squares discussed 
in the introduction. The squares in this case have to be placed so that their sides 
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coincide with the lines of an overlaying rectilinear grid. The following theorem can 
also be generalized to packing problems without such a restriction. 

THEOREM 4.1. There is a polynomial-time approximation scheme for the prob- 
lem of packing a maximal number of k x k squares Cfor a natural number k) into 
an area that is given by n squares of unit size on a rectilinear grid. The approxi- 
mation algorithm with parameter 1 has an error ratio 5 (1 + 1/l)2 and runs in time 
O(k2.12-n’2). 

PROOF. One reduces the problem via two nested applications of the shifting 
strategy to a local packing problem in an 1-k x 1. k square. The local packing 
problem can be solved by enumeration in O(fi’) steps, where fi is the number of 
given unit squares that fall into the considered 1. k x I. k square. We assume here 
that a list of all possible placements of k x k squares that lie totally inside the area 
of the n given unit squares has been generated as part of the input. 

The shifting strategy that has been described in Section 2 for the covering 
problem can be translated to packing problems with the help of the following 
observation. The absolute error that results from solving the packing problem 
separately in each strip for a given shift can be bounded by the number of k x k 
squares in an optimal global solution of the packing problems that include unit 
squares in two different strips. Q.E.D. 

For fixed 1 one has the option of speeding up the corresponding approximation 
algorithm by using some faster algorithm for optimal packings in 1. k x 1. k squares 
(see, e.g., the analogous approach in [5, sec. 51). 

Remark. We also get polynomial approximation schemes for many packing 
problems in higher dimensions, with arbitrary orientations and with other objects 
than squares-see the analogous discussion in Section 3. 

5. Conclusion 
All the approximation schemes described in this paper use a local algorithm that 
solves the covering or packing problem in a cube with sides of length 1.D. An 
interesting direction for future research is to find optimal local algorithms that are 
more efficient than enumeration. Another alternative is to consider for such local 
problems a heuristic that belongs to some approximation scheme. Together with 
the shifting strategy defined in this paper such a heuristic, if extant, will produce a 
faster overall approximation algorithm. 

The results of this paper and Baker’s paper [I] raise the question of whether 
there exist polynomial approximation schemes also for nongeometric and non- 
planar covering and packing problems. In general, it would be desired to find 
additional strongly NP-complete problems that have polynomial-time approxima- 
tion schemes. 
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