
CODEN:LUTEDX(TETS-5419)/1-83/(2001)&local 3

A System Dynamics Simulation Study of a
Software Development Process

Carina Andersson
Lena Karlsson

March 2001

Advisors: Advisors:
Martin Höst Wladyslaw Bolanowski
Department of Communication Systems Susanne S Nilsson
Josef Nedstam
Department of Communication Systems
Bertil I Nilsson
Department of Industrial Management and Logistics

2

3

Abstract

In order to define software quality and set up quality goals, it is important to
have a well-defined set of quality metrics on the software product. One
necessary step to identify a relevant set of metrics is to understand the
mechanisms in the software projects. Such an understanding can be
achieved by building and simulating models of the software development
processes.

The purpose of this thesis is to build and simulate a model of a software
development process at Ericsson Mobile Communications AB to visualise
the process mechanisms. The thesis aims at building up their competence
regarding modelling and simulation of software development processes.

The study began with an analysis of the existing software processes at
Ericsson Mobile Communications AB and continued with the development
of a basic model of one of the processes. The model showed which variables
that need to be more carefully regarded and measured. The model was
finally simulated in a commercial simulation tool in order to visualise the
mechanisms in the process. The simulations showed that allocating more
resources to requirement and specification tasks would result in a shorter
lead-time and a higher quality of the developed software than what is
currently accomplished at Ericsson Mobile Communications AB.

Other results in the report are a theory section about modelling and
simulation to enhance the reader�s competence, and a description of possible
future development of the model.

4

5

Table of Contents

1 Introduction...7

1.1 Background ..7
1.2 Objective ..8
1.3 Outline..8

2 Software Engineering..11
2.1 The Goal of Software Engineering...11
2.2 The Software Process ...12

2.2.1 The Waterfall Model ...12
2.3 Software Metrics ..14

2.3.1 Function Point Count ..14
2.3.2 COCOMO ...15

2.4 Conclusion ...15
3 Modelling and Simulation...17

3.1 Modelling Concepts ...17
3.2 Constructing a Model ...18
3.3 Modelling Methods ..18
3.4 Advantages with Simulation ..19
3.5 The Rules of System Dynamics ...20
3.6 System Dynamic Schematic Convention ...21
3.7 Review of Simulation Tools...23
3.8 Conclusion ...25

4 Process Description...27
4.1 The Processes at ECS...27
4.2 The Product Process ...28
4.3 The Platform Process ...29
4.4 Process Requirements ..30
4.5 Conclusion ...30

5 Method ..31
5.1 The Steps in the Simulation Study ...31
5.2 Selection Criteria..33
5.3 Threats..34
5.4 Conclusion ...34

6 Execution of the Simulation Study..35
6.1 Problem Definition...35

6.1.1 Problem Formulation...35
6.1.2 Problem Delimitation ..36
6.1.3 Literature Study and Process Analysis ..37
6.1.4 Problem Solving Method ..38

6.2 Simulation Planning ...39
6.2.1 Data Collection..39
6.2.2 Theoretical Model Building ..40

6.3 Simulation Operation ...44
6.3.1 Model Translation ...44
6.3.2 Verification and Validation...45
6.3.3 Simulation ...45

6.4 Conclusion ...46
7 Results and Analysis of the Simulation...47

7.1 Case 1...47
7.1.1 Simulation of Case 1 ...47
7.1.2 Comparison with Other Estimating Methods ..49

7.2 Case 2...50
7.3 Conclusion ...51

8 Evaluation of Powersim Studio 2000..53

A System Dynamics Simulation Study of a Software Development Process

6

9 Discussion .. 57
9.1 Summary ... 57
9.2 Further Development of the Model ... 59
9.3 Conclusion... 61

References ... 63
Appendix A The Simulation Model .. 67
Appendix B Values Used in the Model ... 81
Appendix C Tables of Results ... 83

Introduction

7

1 Introduction

1.1 Background

Currently, a metrics programme is being launched at the software
development organisation at Ericsson Mobile Communications AB (ECS).
The objective of this metrics programme is to gradually define software
quality and set up quality goals. In this process the understanding of
mechanisms in the software project is a necessary step to identify a relevant
set of metrics. Such an understanding has to be built up by monitoring
parameters and results of the software projects � a procedure that takes a
long time. Building models and simulating these models can speed up this
procedure.

The constantly ongoing work with quality improvements at ECS aroused the
interest to measure parameters of the software development processes. Thus,
this report describes the model building and simulation in order to visualise
which parameters that should be measured.

There are several other advantages of building models of software
processes. By simulation some new knowledge might be gained, that can
help ECS to improve the current processes. Building and simulating models
also opens a new opportunity of visualisation of the mechanisms of the
processes � it can be used for training and to enforce motivation for
changes.

A System Dynamics Simulation Study of a Software Development Process

8

1.2 Objective

The overall goal is to build and simulate a software development process
model. This will visualise different connections and relations that affect the
quality in ECS�s development projects. The thesis aims at increasing the
competence at ECS on how to build models of software processes and how
to simulate the models using a commercial tool available on the market.

In order to achieve this purpose a number of other tasks have to be carried
out, which are included in the report. An overview of the area regarding
process modelling and simulation and an investigation of the tools available
on the market are presented. The tool used in the study is evaluated to
survey its advantages in forthcoming work. The report includes guidelines
for the forthcoming work on how to further develop the process model.

1.3 Outline

This report is divided into three parts:

Part I

This part contains the first four chapters, which gives an introduction to this
report, and the necessary knowledge to understand the simulation study.

Chapter 1 gives the background to this simulation study. This chapter also
contains the objective and purpose of this thesis and the outline of this
report.

Chapter 2 gives an introduction to the discipline of Software engineering,
and a brief description of the terminology that is used in this thesis.

Chapter 3 consists of an overview of modelling and simulation theory.

Chapter 4 describes the two processes that have been investigated during
this simulation study, the product process and the platform process at ECS.

Part II

The second part consists of the two chapters that describe the main task of
this thesis, namely to build and simulate a process model.

Chapter 5 includes the method used to perform the simulation study and the
threats against the validity of the model.

Chapter 6 explains the execution of the simulation study.

Introduction

9

Part III

The last part of the report describes and discusses the results of the
simulation study.

Chapter 7 contains the results and analysis from the simulation.

Chapter 8 consists of the evaluation of the used simulation tool.

Chapter 9 is a discussion that includes a summary and recommendations
for future work.

A System Dynamics Simulation Study of a Software Development Process

10

Software Engineering

11

2 Software Engineering

This chapter is an introduction to the discipline of Software engineering, and
gives a brief description of the terminology that is used in this thesis. The
first section describes the goal, use, and purpose of the discipline, while the
next section continues with the basic process activities used in software
engineering. Then the waterfall model, and its process phases, is described,
since it is used throughout this thesis. In order to get a well-functioning
software engineering process it is necessary to continuously measure and
evaluate the results of projects to improve the software quality and reduce
the costs. In the third part of this chapter, a description of two metrics is
included. These metrics are used to achieve the quantification of the
software quality, which is necessary for the software quality improvement.

2.1 The Goal of Software Engineering

In the industrialised countries more and more products incorporate
computers in some form. Educational, administrative, and health care
systems are dependent on large computer systems. Software engineering is
concerned with the theories, methods, and tools, which are needed to
develop the software for these computers. In most cases, the software
systems that must be developed are large, complex and always abstract, in
that they do not have any physical form. Hence, they must be thoroughly
documented in for example system designs and user manuals. In the last 30
years methods of software specification, design, and implementation have

A System Dynamics Simulation Study of a Software Development Process

12

been developed. New notations and tools have reduced the effort required to
produce large and complex systems. However, many large software projects
are still late, over-budget and result in poor software quality. Therefore
software engineering is constantly of great importance. [1]

The goal of software engineering is to produce maintainable, dependable,
efficient, and usable software. To achieve this goal it is necessary to have a
well functioning software process.

2.2 The Software Process

Common to all software processes, there are four basic process
activities [1]:

Software specification includes defining the functionality and constraints of
the software.

Software development means producing the software according to the
specification.

Software validation is performed to make sure that the market requirements
are fulfilled.

Software evolution contains evolving the software to meet changing
customer needs.

These four process activities are included in four general models:
evolutionary development, formal transformation, system assembly from
reusable components and the waterfall approach.

In evolutionary development an initial system is rapidly developed from
very abstract specifications. This system is then refined with customer input
to produce a system, which satisfies the customers needs. Formal
transformation is based on producing a formal mathematical system
specification and transforming this specification to a program. System
assembly from reusable components focuses on integrating the parts of the
system that already exists rather than developing them from scratch. The
waterfall approach, is used in the software development processes at ECS,
and will be described below.

2.2.1 The Waterfall Model

The waterfall model takes the four basic process activities and represents
them as separate process phases: requirement specification, software design,
implementation, testing, and maintenance, see figure 2.1. After each stage is
completed it is �signed-off� and development goes on to the following
stage.

Software Engineering

13

Figure 2.1 The process phases of the waterfall model

Requirement specification. The system�s services, constraints and goals are
established by consultation with system users, benchmarking and surveys of
technology restraints.

Software design. The software design involves representing the software
system functions in a form that may be transformed into one or more
executable programs.

Implementation. During this phase, the software design is realised as a set of
programs or program units.

Testing. The software is tested to ensure that the software requirements have
been met.

Maintenance. This phase involves correcting errors, which were not
discovered in earlier stages of the life cycle, improving the implementation
and enhancing the system services as new requirements are discovered.

This software process is not a simple linear model but involves sequences of
iteration of the development activities. Unfortunately, these iterations make
it difficult to identify definite management checkpoints for planning and
reporting. Therefore, after a small number of iterations, it is normal to freeze
parts of the development, such as the specification, and to continue with the
later development stages. This premature freezing of requirements, where
problems are left for later resolution, may mean that the system will not do
what the user requires. [1]

Requirement
specification

Software
design

Implementation

Testing

Maintenance

A System Dynamics Simulation Study of a Software Development Process

14

2.3 Software Metrics

A software metric is a term that embraces many activities, all of which
involves some degree of software measurement. These measurements relate
to a software system, process or related documentation. Examples of metrics
are cost and effort estimation, reliability models, and performance
evaluation. Examples of measures are size of a product in lines of code, the
number of reported faults in a delivered software product and the number of
person-days required to develop a system component.

Up till now metrics have been relatively little used in the software industry.
Nevertheless, there is an increasing awareness that metrics have an
important role in quality improvement, which in these days is leading to an
increase in the industrial use of metrics.

Many of the metrics are used to estimate software costs. To do this a
measurement for productivity, the number of units output divided by the
number of hours input, is needed. The most commonly used measure of
productivity is lines of source code per programmer-month. It is
meaningless to compare productivity in this way across different
programming languages, since the functionality, in the same number of lines
of code, varies between languages. Thus, instead of measuring the number
of lines of code, it is better to use a measure of the functionality. Several
different function-based measures exist, but the best known is the function
point count. [1]

2.3.1 Function Point Count

The total number of function points in a system or specification is computed
by measuring or estimating the following program features: External inputs
and outputs, User interactions, External interfaces, and Files used by the
system [1].

In the simulation performed in this thesis the productivity is measured in
function points, to be able to use the rules of thumb in [2].

At ECS one of the used programming languages is C, and according to [2]
the number of function points (FP) is approximately equal to the number of
C-statements (LOC) divided by 128. The rules of thumb are based on logical
statements rather than physical lines [2].

128

LOC
FP ≈ (Equation 2.1)

Software Engineering

15

2.3.2 COCOMO

One of the most widely used software cost and effort estimation models is
the constructive cost model COCOMO. The effort will in COCOMO be
expressed as follows:

bSaE ∗= (Equation 2.2)

E is effort in person-months and S is size measured in thousands of lines of
code (KLOC). The values of a and b, listed in table 2.1, depend on the type
of software being constructed.

Table 2.1 Effort parameters for three modes of COCOMO
Mode a b

Organic 2.4 1.05
Semi-detached 3.0 1.12

Embedded 3.6 1.20

An organic system tends to use databases and focus on transactions and data
retrieval, and can for example be a banking or accounting system. An
embedded system contains real-time software that is an integral part of a
larger, hardware-based system, and can for example be a missile guidance
system. A semi-detached system is somewhere between organic and
embedded.

With a similar COCOMO formula it is also possible to predict the duration
of the project in calendar months. For further information see [3].

2.4 Conclusion

To be able to identify a relevant set of metrics it is necessary to understand
the mechanisms of the software processes. Building models, and simulating
these models, can make it easier to get this understanding. The next chapter
describes the theory of model building and simulation.

A System Dynamics Simulation Study of a Software Development Process

16

Modelling and Simulation

17

3 Modelling and Simulation

The purpose of this chapter is to give an overview of modelling and
simulation theory. It starts with a description of how to construct a model
and the existing modelling methods. The chapter continues with the
advantages of simulating these models. From chapter 3.5 only the concepts
of system dynamics is described as this is the method used in this thesis, see
chapter 6.2. The rules and schematic convention of system dynamics are
described. In the end of the chapter there is a review of some simulation
tools used for system dynamics.

3.1 Modelling Concepts

A model is an abstraction of a real object or system, and modelling a system
means capturing and abstracting the system�s components, relationships and
behaviour, according to the model�s goal. [4]

Simulation can help to gain insight into the behaviour of software
development processes. Creating a model of the process and then simulating
the behaviour of the process over time allows us to understand and predict
process behaviour. Modelling and simulation can produce tools tailored to
the profile of an organisation to manage the live process and to predict and
improve performance.

A System Dynamics Simulation Study of a Software Development Process

18

3.2 Constructing a Model

The first step in a simulation study is to develop a model representing the
system to be investigated. A suggested way is to reduce the real system to a
logical flow diagram, where the components themselves may be broken
down into sub-components, and so on. The system is broken down into a set
of elements for which operating rules may be given. After specifying these
rules and logical linkages it is necessary to test the model. This test can be
done by performing a gross version of the simulation on a calculator, and
checking whether each input is received from the right source and whether
each output is acceptable. This is done stepwise, where the time step is a
value specifying the time increment for each step of the simulation. [5]

The typical simulation model consists of a high number of elements, rules
and logical linkages. Therefore, after the individual components have been
tested, it is important to test the validity of the model to reasonably predict
the behaviour of the system being simulated. The output data from the
model should be compared with the corresponding performance data from
the real system. If the real system has not already been in operation and the
model is intended to simulate operating policies for a proposed system, for
which no available data exist, the only way to validate the overall model is
to have knowledgeable people carefully check the credibility of output data
for a variety of situations.

3.3 Modelling Methods

There are three basic kinds of modelling methods: analytical, continuous
and discrete modelling.

The analytical model provides average data on process behaviour and is
often used in the software community. An example is the COCOMO model
that is used for estimating schedule and effort for a given software product.
These analytical models do not consider dynamic interaction between
factors inherent in the process, neither are they possible to simulate. [6]

More detailed and realistic predictions of the process behaviour require
more sophisticated models, generally based on simulation techniques. Such
techniques are either discrete or continuous or a combination of these, which
result in a hybrid model. [7]

Continuous model
The continuous type of simulation technique is based on system dynamics
and is mostly used to model the project environment. This technique is
useful when controlling systems, with dynamic variables, that change over
time. Examples of these variables are productivity and defect detection
rates. The continuous model, which is a qualitative model, represents the
interaction between project factors as a set of differential equations.
Integrating these equations over time describes the behaviour of project
variables such as staff levels, motivation, resource consumption and the
number of detected errors. Both the qualitative and the quantitative models

Modelling and Simulation

19

result in numerical data. But while the results from the qualitative model
only should be interpreted as tendencies of an increase or a decrease, the
results from the quantitative model can be interpreted numerically.

The system dynamics model describes the system in terms of flows, for
example the error generation rate, that accumulate in various levels, for
example the number of errors. A system dynamics simulation can model the
continuous change in, for example, productivity, resource constraints and
schedule pressure, as the project progresses. This kind of simulation model
is a difficult way to describe discrete process steps since the nature of the
simulation tools, used for continuous modelling, implies that all levels
change at every time interval. If the process contains sequential activities,
some mechanism must be added to prevent all activities from executing at
once. This is the case when for example all design work has to be completed
before coding starts. Examples of system dynamics tools are Dynamo, ithink
(Stella) and Powersim. [6, 8]

Discrete model
In the discrete model, time is advanced because of a discrete event. This
means that continuously changing variables only are updated at the event
times. This can cause problems in the integration of the continuous variables
or may create instability in the behaviour of feedback loops. It is also
difficult to use dynamic relations in the simulation model. The discrete
model requires a large amount of detailed information in order to give valid
numerical results that are required in a quantitative model. Because discrete
models are based on the idea of sequence of activities, it may be hard to
represent simultaneous activities. To capture this in a discrete model it is
necessary to model sub-components so that each component can be in only
one activity at a time. Discrete event modelling can be used on a queuing
network, which represents the component activities, their interactions and
the exchanged artefacts. ProModel, GPSS and SIMAN are examples of
discrete-event simulation tools. [6, 8]

3.4 Advantages with Simulation

Understanding a system�s behaviour and the parameters that affect
performance is vital to a company�s management. Many of the inner
mechanisms of the system are revealed during a simulation study. The
studies performed before modelling often result in a detailed understanding
of the system. Visualisation of the model then adds even more
understanding of system behaviour. Further more, a simulation can be
shown and explained to others in the organisation. [9]

Some of the advantages with simulation are that:

- simulation helps to understand the complex nature of dynamic systems and
can be used for training.

- mathematical models, by themselves, can not describe most complex
systems, with stochastic elements.

A System Dynamics Simulation Study of a Software Development Process

20

- experimenting with a system itself is often too expensive, lengthy or
impossible.

- simulation allows studies of a system over a long time period since time is
compressed.

3.5 The Rules of System Dynamics

Systems thinking is the base of all system dynamics simulations. It is a way
of thinking about, and describing the forces and inter-relationships that
shape the behaviour of systems. This discipline helps to see how to change
systems more effectively. [10]

System dynamics simulations are based on the principle of cause and effect,
feedback, and delay. Cause and effect is a simple idea, but some simulations
based on methodologies other than system dynamics do not use it. The idea
is that actions and decisions have consequences, for example price affects
sales, and births affect the size of a population. When examining these cause
and effect relationships isolated, they are usually very easy to understand.
However, when they are combined into long chains of cause and effect, they
can become complex. Feedback is the process in which an action taken by a
person or thing will eventually affect that person or thing. A feedback loop
is a closed sequence of causes and effects, a closed path of action and
information. An interconnected set of feedback loops is a feedback
system. [11]

Causal-loop diagrams can be created and are often used in system dynamics
to illustrate cause and effect relationships. In such diagrams arrows are used
to indicate the relationships. Sometimes, information about the way in
which the relationship works is also included in the diagram. One way of
showing this is by adding an �o� in the diagram, which implies a �change in
the opposite direction�. The relationship between price and sales is such a
relationship, where an increase in price leads to a decrease in sales. The
relationship between births and population is described by another character.
When births increase, so does the population. This is a situation where a
change leads to a �change in the same direction�. Adding an �s� to the arrow
in the diagram indicates this. Figure 3.1 shows a simple causal-loop diagram
where price has a negative effect on sales, which in turn has a negative
effect on unit costs, which in turn has a positive effect on price.

Modelling and Simulation

21

Figure 3.1 Causal-loop diagram illustrating connections between price,
sales, and unit costs.

Not all cause and effect relationships occur instantaneously. Sometimes the
consequences of an action or decision are not apparent until several days,
months, or even years after an event has taken place. It is difficult to
understand a system when the consequences can not be seen close to the
behaviour. Delays can produce interesting and complex behaviour in
systems even when those systems have no feedback and limited cause and
effect complexity.

Understanding the concepts of cause and effect, feedback loops, and delays
provides a good foundation when beginning to uncover the complexity of a
system�s nature. However, feedback loops alone do not indicate what the
entire system�s behaviour will be since the system is affected by many other
variables. It is hard to anticipate the behaviour of a system from a causal-
loop diagram alone, but such diagrams are useful when it comes to isolating
the feedback structures.

3.6 System Dynamic Schematic Convention

From a system dynamics perspective all systems are, in a simulation tool,
represented in terms of level and rate variables, with auxiliary variables
used for added clarity and simplicity. A level is an accumulation, or
integration, over time of flows or changes that come into and go out of the
level. The term level is intended to invoke the image of the level of a liquid
accumulating in a container. The flows increasing and decreasing the levels
are called rates. Thus, a manpower pool would be a level of people that is
increased by the rate of hiring and decreased by the rate of firing and
quitting. Rates and levels are represented as stylised valves and tubs, as
shown in figure 3.2. Flows will always originate somewhere and terminate
somewhere. Sometimes, the origin of a flow is treated as essentially
limitless, or at least outside the model-builder�s concerns. In such a case the
flow�s origin is called a source. Similarly, when the destination of a flow is
not of interest, it is called a sink. For example, for a level of workforce these
symbols represent where people come from when they are hired and where
they go after leaving the project. Both sources and sinks are shown as little
clouds, as illustrated in figure 3.2. [12]

Price Sales

Unit Costs

O

O

S

A System Dynamics Simulation Study of a Software Development Process

22

Figure 3.2 Representation of rates and levels

Tangible variables are either levels or rates, which means that they are either
accumulations of previous flows or are presently flowing. Usually, however,
it is difficult to write a rate equation without doing some computation,
which is done with auxiliaries. Auxiliary variables are combinations of
information inputs and are represented by a circular symbol, as shown in
figure 3.3. A few other symbols complete the designation of items included
in formal system dynamics diagrams. In addition to the variable symbols
shown above, models also include constant terms, which are parameters of
the model whose values are assumed to be unchanging throughout a
particular computer simulation. The simple arrow symbolises an information
flow while the double arrow represents a physical flow, for example people
or software. The Rate in figure 3.3 can for example be a total productivity,
which in this case is the product of the number of people, the Constant, and
their individual productivity, the Auxiliary.

Figure 3.3 Representation of auxiliary and constant variables

In a simulation tool the variables - rates, auxiliaries, levels, flows and
constants - are selected from the toolbar, positioned in the workspace, and
connected with arrows. For each variable a number or equation has to be
defined. In Powersim, for example, this is made in the Definition box in the

Rate Rate SinkSource Level

Rate

Constant

?

Auxiliary

Modelling and Simulation

23

Property dialog box. Units for all variables are defined as can be seen in
figure 3.4.

Figure 3.4 Properties window in Powersim

Finally, because complex models are often diagrammed in multiple displays,
situations arise in which variables pictured on one diagram are used in
another diagram. These variable cross-references are shown by including the
symbol of the other diagram�s variable in parentheses as shown in
figure 3.5.

Figure 3.5 Representation of variable cross-reference

3.7 Review of Simulation Tools

The simulation tools described in this chapter are some of the most common
simulation tools for system dynamics simulation. In these simulation tools it
is possible to both develop the underlying model and create the interface,
i.e. the buttons and commands that the users see. [13]

ConstantLevel Rate

A System Dynamics Simulation Study of a Software Development Process

24

Powersim
In mid 1980s the Norwegian government sponsored research aimed at
improving the quality of high school education using system dynamics
models and the result was an early version of Powersim. Today, Powersim
is a flow-diagram-based modelling tool, which is able to show multiple
models simultaneously and connect separate models to each other. It is
possible to use slide buttons to handle inputs and reports, and plots and
tables for the output. It is also possible to add causal loop diagrams.

Vensim
Originally developed in mid 1980s for use in consulting projects, Vensim
was made commercially available in 1992. Vensim is an extremely powerful
model development language. The modelling begins with the use of a sketch
tool to enter the causal loop diagrams, which will become the basis of the
model. Vensim automatically documents the model and creates trees that
allow tracing cause-and-effect relationships throughout the entire model. It
offers sophisticated statistical and graphics features and allows the user to
create menus, input screens and text screens.

Dynamo Plus
Dynamo was the first system dynamics simulation language, and for a long
time the language and the field were considered synonymous. The language
was made commercially available in the early 1960s. Dynamo Plus allows
building extremely large models with a variety of sophisticated
programming features. The programming starts by typing in equations,
based on diagrams, drawn on paper. The tool is complex but has great
programming power.

Stella/ithink
Originally introduced on the Macintosh in 1984, the Stella software
provided a graphically oriented front for the development of system
dynamics models. Stella is used for educational solutions while ithink is
used for business solutions. Because of the powerful features and ease of
use, Stella/ithink is one of the most popular system dynamics modelling
tools. It allows drawing stock-and-flow diagrams and maps the structure of
the system before entering equations. More details can be added, elements
can be grouped into sub-models, and it is possible to zoom in for more detail
in complex models. The manual is also a good introduction to systems
modelling.

Extend
Extend was created in the late 1980s and includes graphical model building
with integrated animation. Extend is a powerful and flexible simulation tool,
which has possibilities for both discrete-event and continuous simulation.
Extend�s Specialised Extend toolkits provides solutions in specific areas, for
example Extend + BPR that focuses on business process modelling, human
performance studies and workflow analysis. [14]

Modelling and Simulation

25

3.8 Conclusion

In this chapter the theory of modelling and simulation has been discussed.
One way of building models is based on system dynamics, which is
appropriate for simulating the project environment and its dynamic and
qualitative attributes. The project environment at ECS is described in the
next chapter.

A System Dynamics Simulation Study of a Software Development Process

26

Process Description

27

4 Process Description

In this chapter the two processes that has been investigated during this
simulation study are described. These are the product process and the
platform process at ECS. The third section of the chapter discusses the
differences between, and similarities of, the two processes. [15]

4.1 The Processes at ECS

At ESC there are different kinds of software processes, for example
platform, product and support processes. The result of a project that follows
the platform process is delivered to the projects that follow the product
process for completion of the software. The support processes are used on a
regular basis when needed. Examples of support process are Configuration
Management, Code Review and Document Review processes. [16]

This separation of the processes is fairly new; the platform process has been
active for only a year. The platform process used to be a part of the product
process.

A System Dynamics Simulation Study of a Software Development Process

28

MS 7 MS 6

4.2 The Product Process

The Software Product Process at ECS has been active several years and is
more mature than the platform process. The product process is a waterfall
process, divided into eight consecutive phases with milestones (MS) in-
between, see figure 4.1. The product process follows PROPS, a project
planning method developed by Ericsson [17]. The Time To Market-process
(TTM), a management process, is also used to help to introduce a new
product within budget and schedule.

Figure 4.1 The Product Process

In the preparatory pre-study phase, before the project has been formally
started, market requirements are documented and analysed, so that the
requirements will fulfil the business idea and the customer needs. The
purpose of the pre-study phase is to ensure that a business idea is technically
and commercially feasible.

The second phase is the feasibility study. The requirements are documented
and analysed in more detail. The project is outlined and the needed
resources are specified. The purpose of this phase is to decide on a strategy,
define the project goal and prepare project plans.

Between MS 2 and MS 4 the work is separated into different modules. At
this time there are a lot of people entering the project, and the design,
implementation and function tests are made in work packages in parallel.

The purpose of the design phase is to produce design documentation for the
software modules and their interactions and internal structure. The
documents are intended to support software designers engaged in changing
or maintaining the source code. The technical content shall be sufficient to
support the design implementation. Test cases shall also be designed.

The intention of the implementation phase is to implement the result from
the previous phase, both in terms of source code and test instructions for the
previously developed test cases. The work is done separately for each
module.

F
ea

si
bi

li
ty

 S
tu

dy
 P

ha
se

D
es

ig
n

P
ha

se

Im
pl

em
en

ti
ng

 P
ha

se

F
un

ct
io

na
l T

es
t P

ha
se

S
ys

te
m

 T
es

t P
ha

se

A
cc

ep
ta

nc
e

P
ha

se

C
on

cl
us

io
n

P
ha

se

P
re

-S
tu

dy
 P

ha
se

MS 1 MS 2 MS 3 MS 3.5 MS 4 MS 5

Process Description

29

The purpose of the function test phase is to make sure that all the functions
work together properly and that all the software module requirements have
been implemented, by testing the software system.

The purpose of the system test phase is to integrate and test all the systems
in the mobile phone.

The purpose of the acceptance phase is to make the software ready for type
approval. In order to get a type approval from the authorities, a series of
acceptance tests have to be made to ensure that the net is not disturbed by
the mobile phone�s signalling.

The conclusion phase is the last phase of the project, during which the
experiences made in the project are documented and lessons transferred to
the organisation. After this, the project is formally closed. The purpose of
the conclusion phase is to terminate the software project and to write a final
report, and ensure that the organisation will have access to and be able to
learn from the experiences made and the competence development achieved
in the project.

4.3 The Platform Process

A product platform is a set of subsystems and interfaces developed to form a
common structure from which a stream of derivative products can be
efficiently developed and produced. Benefits of a product platform are for
example increased speed in product development, reduced product
development cost, increased product variety and functionality and potential
for new products. [18]

The Software Application Platform process at ECS is used to develop a
software platform for several different mobile phones. This platform process
is also a waterfall process, which is divided into four phases: pre-study,
feasibility study, execution, and functional test, see figure 4.2. The platform
process also contains an internal sub-process, the Software Module process,
which describes the activities to design, implement and test the functionality
assigned to a software module.

A System Dynamics Simulation Study of a Software Development Process

30

Figure 4.2 The Platform Process

The platform process is performed similarly as the product process. But the
last phase, where the integration and functional test of the software platform
should be made, is not used today. Instead this is performed after delivery to
the product process at MS 4. The product process will in the future integrate
the software platform with the software product, after MS 5, and after
trouble reports from the product process the platform will be corrected.

4.4 Process Requirements

The platform process is used to develop the generic software to a number of
mobile phone models with similar performance. It is important that the
generic software is of high quality and reusable so that it is possible to
further develop the platform. Since the platform is not developed only for
one target phone the platform must be adaptable to several products. It
should also be possible to add or remove features and memory capacity to
more or less advanced models.

For the product process it is important that a market validation is made to
ensure that the product meets the market requirements. It is also important
with high delivery precision and the tool for this is the TTM-process. A type
approval is done, before the mobile phone is allowed to be used in the
mobile net, to avoid that a prototype, due to a manufacturing fault, disturbs a
net.

4.5 Conclusion

This chapter brings Part I of this report to an end. Thus, all the theory
necessary for this simulation study has been discussed. Part II, which starts
with the forthcoming chapter, will use this terminology in describing the
method and execution of this simulation study.

Feasibility
Study Phase

Functional Test PhaseExecution Phase

F
ea

si
bi

li
ty

Pre-
Study
Phase

D
es

ig
n

Im
pl

em
en

ta
ti

on

M
od

ul
e

T
es

t

MS 1 MS 2 MS 3 MS 3,5 MS 4 MS 5

Method

31

5 Method

In this chapter the method, developed to accomplish this simulation study, is
described. This means that this chapter only contains the planning of how
the assignment should be performed and not the execution itself, which is
described in chapter 6. The planning of a simulation study also includes
defining criteria for different choices made in the study; this is available in
chapter 5.2. Chapter 5.3 describes general threats against the model�s
validity, credibility and usability.

5.1 The Steps in the Simulation Study

The simulation model building process is broken down into three phases:
problem definition, simulation planning and simulation operation, see figure
5.1. This break down structure is influenced by [19, 20] and is adjusted to
meet the expectations of this thesis. One change is made: adding a
simulation step after the model translation to make the process able to work
in an iterative manner.

A System Dynamics Simulation Study of a Software Development Process

32

Figure 5.1 Steps in the simulation study

In the first phase, problem definition, the problem should be formulated,
defined and delimited. The objective should be set and the goal described.
Determining how much the model should include is an important issue and
an iterative process. To fully consider the whole objective, the model needs
to have the right approach. [21]

The problem was defined and formulated at ECS but the delimitation was
made after surveying the processes. This phase also includes literature study
and process analysis. Literature of software engineering, experiment
methodology and systems thinking provided the necessary knowledge to
accomplish this simulation study. The process analysis was concerned with
studying the existing processes at ECS to understand the relationships

No No

No

Theoretical
model building

Data collection

Problem formulation
and delimitation

Model translation

Validated

Verified

Final
simulation

Problem
definition

Simulation
operation

Simulation
planning

Literature study and
process analysis

Problem
solving method

Simulation

Method

33

between different parts of the process. The problem solving method was
chosen to meet ECS�s goal and to answer their questions, which are
described in chapter 6.1.1.

The second phase is the simulation planning phase. When planning and
developing a simulation model, it is necessary to identify the relevant
parameters, their relationships, and behaviour, for inclusion in the model.
The input parameters to include in the model largely depend on the purpose
of the model. [21]

This phase concerns theoretical model building and data collection. The data
is the relevant parameters in the simulation model and these were identified
and described. The quantitative data was collected through reports and
software estimation literature [2, 12]. The theoretical model building
includes putting together the relationships between the relevant parameters.
This was performed through discussions with experienced employees at
ECS. This phase was returned to during the remaining work of the
simulation study.

The third phase, simulation operation, aims at finding the values of the
output parameters. The simulation model was verified and validated to
ensure its credibility and relevance. The model was simulated to discover
the output parameters and relate them to estimates of time and effort.

This phase starts with translating a small part of the theoretical model to the
simulation tool and running the simulation to ensure that it works properly.
This was performed iteratively by adding more features to the model, which
in this way was further developed. The verification and validation was made
continuously through the model construction with help from the supervisors.
After this the final model was simulated in order to receive the results
needed for the following analysis.

5.2 Selection Criteria

In the second phase, choices of simulation model and simulation tool were
made. The simulation model was chosen to meet ECS�s desire to increase
the systems thinking in the company and to point out the qualitative
relations in the development processes. There is a lack of quantitative
documentation that had to be manageable by the model. It also had to be
possible to simulate the model.

To make a first selection of simulation tools the criterion is that the tool in
question is often mentioned in the software literature and is adjusted to the
chosen simulation model. From this selection, the tools that were examined
had to have an easily available, free demo version, with well-equipped help
functions and tutorials. The tool had to be simple to learn and use, to
provide a possibility to make an easy adaptation of the model for future
work.

A System Dynamics Simulation Study of a Software Development Process

34

5.3 Threats

To avoid the consequences of several possible threats against the model�s
credibility, these threats were carefully considered during the whole
simulation model building process.

One of the problems to consider was that the processes at ECS are new and
not so well documented. This means that there is a lack of measurements
and it may be hard to find relevant data on an appropriate level. This implies
that there is a risk that the model could become too general and therefore not
visualises ECS�s reality.

One threat against the credibility of the model was that values of the chosen
input parameters could be impossible to find in ECS�s development projects.
The consequence of this would be that parts of the model had to be rebuilt,
and new input parameters would have to be found, under time pressure.

Another possible problem is that the results from the developed model
would not be usable enough. This can be the case if the input parameters can
not be affected by ECS�s managers or if the communication with the
decision-maker fails. It is essential to promote model credibility and to
ensure that the correct problem is solved.

A threat against the model�s validity is that the validation was performed
entirely through discussions with employees at ECS. The respondents might
have given subjective answers and might not be competent enough. This can
result in inconsistent and corrupt data. [9]

If the simulation tool chosen is not adaptable to the problem solving method,
the problem solving method would have had to be revised since a change of
tool would be more costly both in terms of money and effort.

For future use there is a risk that the results and analyses are misinterpreted
because the user is not well acquainted with the utilisation of the simulation
model.

5.4 Conclusion

With this well-defined plan of the simulation method, a stable foundation
for the forthcoming work was achieved. The selection criteria and threats,
discussed above, were taken into consideration throughout the study. The
forthcoming work will be described in the next chapter.

Execution of the Simulation Study

35

6 Execution of
the Simulation Study

This chapter describes the execution of the three phases of the simulation
study: problem definition, simulation planning, and simulation operation. In
the problem definition phase, the problem was concretised in order to build
the theoretical model, which was done in the simulation planning phase.
This theoretical model was transformed to a simulation model in the
simulation operation phase.

6.1 Problem Definition

The first phase in the simulation study was the problem definition. This
included formulation and delimitation of the problem, choice of problem
solving method, literature study, and process analysis, see figure 5.1.

6.1.1 Problem Formulation

The original problem was formulated and defined by ECS at the beginning
of this thesis. The overall objective for ECS was to visualise the process
mechanisms and the relations between the factors that affect the product
quality. One of the most important factors that affects the product quality
and the lead-time of the project is the allocation of resources, i.e. the
number of people in each phase. The task was during this thesis broken
down and concretised to meet the objective.

A System Dynamics Simulation Study of a Software Development Process

36

To concretise the task different questions were addressed:

- What factors affect the quality of the products in ECS�s software
development projects?

- How do these factors affect each other?

- Can a relocation of resources, to the different process phases, affect the
quality?

- Is the lead-time of the projects affected by the allocation of resources to
the different phases?

The problem approach, chosen to be able to answer these questions, was to
work out factors affecting the quality of the software developed at ECS,
with help from the supervisors and software literature. Discussions with
employees at ECS gave the most important factors and their relationships.
Through these discussions influence diagrams were created in order to
understand what affects the time in each phase [4].

To answer the last two questions it was also necessary to study the resource
allocation between the requirement phase and the test phase. A problem in
the recently concluded projects at ECS was that the test phase required a
great proportion of the resources compared to the other process phases.
Another problem was that the projects were delayed due to insufficient time
planning, which lead to increased schedule pressure. This approach showed
how the quality and the lead-time were affected by a relocation of the
resources.

The influence diagrams, together with the resource allocation approach,
created the base of the simulation model.

6.1.2 Problem Delimitation

This thesis was performed at the unit Software Application Platforms, which
follows the platform process, described in chapter 4. However, the platform
process was at the moment a new process and not yet fully executed and this
implied that there was no data available. Therefore, the model shows the
product process instead of the platform process. Since the platform process
used to be a part of the product process there are many similarities between
them. In the future, when there are more data available, it will be possible to
rework the model to be applicable to the platform process.

The model is based on data from a final report for a software sub-project.
This project was performed at ECS and concluded in 1999. This sub-project
was chosen to be the base of the model since it was the project, among the
projects recently finished at ECS, that had the greatest amount of data
available.

Execution of the Simulation Study

37

MS 7 MS 6

The study was focused on the requirement specification phase and the test
phase, see figure 6.1. The phases in between were excluded because they
were not important enough in the problem approach, described in chapter
6.1.1. For the same reason the phases that follow the test phase were
excluded. The requirement phase is the base of the software project and it is
important to understand how the result of the test phase is affected by the
requirement specification quality. The problem at ECS was, at the time of
the problem formulation, that a great fraction of the human resources was
required in the test phase, due to insufficient effort estimation. The test
phase is important both in respect of time and effort since this reflects the
software quality.

The requirement phase includes the pre-study phase and the feasibility study
phase and stretches from MS 0 to MS 2, according to chapter 4.2.

The test phase in this thesis involves the functional, system and acceptance
tests that are performed between MS 3.5 and MS 6. All these types of tests
are included, since the data available did not separate these and they over-
lapped in terms of time.

Figure 6.1 Process delimitation

6.1.3 Literature Study and Process Analysis

The literature gave insight into model building and simulation. Systems
thinking and software knowledge was gained from, respectively,
management and software engineering literature. A selection of important
concepts of software engineering is available in chapter 2 and a summary of
model building and simulation in chapter 3.

Knowledge about the processes was gained from ECS�s internal homepages
where the different phases were described [16]. An interview with a process
developer at ECS gave a deeper understanding about the platform
process [15]. General information about software development processes,

MS 2

F
ea

si
bi

li
ty

 S
tu

dy
 P

ha
se

D
es

ig
n

P
ha

se

Im
pl

em
en

ti
ng

 P
ha

se

F
un

ct
io

na
l T

es
t P

ha
se

S
ys

te
m

 T
es

t P
ha

se

A
cc

ep
ta

nc
e

P
ha

se

C
on

cl
us

io
n

P
ha

se

P
re

-S
tu

dy
 P

ha
se

MS 1 MS 3 MS 3.5 MS 4 MS 5

Requirement
Specification Phase

Test Phase

A System Dynamics Simulation Study of a Software Development Process

38

and among them the waterfall process which is used at ECS, was found in
reference literature [1]. ECS�s platform and product processes are described
in chapter 4.

6.1.4 Problem Solving Method

In order to build and simulate a process model, the problem solving method
was divided into two parts. Each part involved one comprehensive choice:
choice of simulation model and choice of simulation tool.

Choice of simulation model
To choose between the discrete-event and continuos models, it was
necessary to understand the relationships involved in the processes at ECS.
The objective of this thesis was to visualise the process mechanisms at ECS,
which implied the choice of the system dynamics model since it is better at
showing qualitative relationships than the quantitative discrete-event model.
It was also important to consider the amount of detailed information
available. The processes at ECS were at the moment rather young so there
was not much data documented. In such a case a qualitative approach is
better, which reinforced that the continuous system dynamics simulation
should be used in this thesis. The discrete-event model�s requirement for
wealth of details made it difficult to use on these processes.

Choice of simulation tool
To choose simulation tool, five tools, well known among the system
dynamicists, were looked into and are described in chapter 2. Four of these
programs were carefully examined: Powersim, ithink, Extend and Vensim.
The fifth tool, Dynamo Plus, was difficult to examine since the developer
did not have a homepage on the Internet. The consulting group that created
Dynamo no longer uses it. Instead they, at the moment, used a proprietary
software that is a Dynamo next generation, but it was not available to the
public. Therefore, no demo version of the program was available [23].
Demo versions of the other four programs were downloaded from the
Internet. Tutorials and small simulation models were built to analyse the
features and the differences between the programs.

Powersim was chosen because of its great variety of features and functions
and the fact that the program was already in use at other Ericsson
companies. The ithink demo version had no help functions, which made it
difficult to get a fair opinion compared to Powersim�s demo version, which
had many well-equipped help functions. Powersim had many of its
functions available as icons in the window in contrast to ithink, which made
it necessary to have a greater knowledge of the functions in ithink.

The Extend program could be used on both discrete-event and continuous
simulation, but the interface made it hard to see the difference between
discrete-event and continuous models. Many of the functions had similar
characteristics, which made it difficult to choose the right one since there
was no information about how to use them.

Execution of the Simulation Study

39

Vensim was another well-equipped tool with a demo version available on
the Internet. For optimal use of this program, causal-loop diagrams should
be the basis of the model. In this thesis, the basis of the model is built on
influence diagrams and therefor this program was not suitable.

The difference between the simulation tools above is in the model
construction process but the results from this simulation study would
probably have been equivalent with any of the tools. The arguments for
Powersim were however stronger than the ones for the other tools.

6.2 Simulation Planning

The second phase in the simulation study was the simulation planning. This
included collecting data, on which a theoretical model was built, see figure
5.1.

6.2.1 Data Collection

The first step in the simulation planning phase was the collection of factors
that affect the quality of the developed software. The factors were collected
with help from the supervisors and from significant software
literature [2, 3]. The factors were chosen to be suitable to software
development processes. The factors are enumerated below without any
relative order.

Table 6.1 Factors that affect the quality
1 Number of people in the overall project
2 Number of people in the object or team
3 Personnel education
4 Personnel experience
5 Personnel salary
6 Staff turnover
7 Communication level
8 Geographical separation of the team
9 Software and hardware resources
10 Environment, for example temperature, light and ergonomics
11 Amount of overtime and workload
12 Schedule pressure
13 Budget pressure
14 Rate of requirement change
15 Amount of program documentation
16 Level of reusable artefacts, for example code and documentation
17 Level of structure in the project organisation
18 Standards that will be adhered to, for example ISO and IEEE
19 Software size and complexity
20 Testing and correcting environment and tools
21 Requirement specification accuracy
22 Amount of review

A System Dynamics Simulation Study of a Software Development Process

40

This phase was returned to iteratively during the work with the simulation
model. During the simulation work described in the next phase, simulation
operation, quantitative data was collected through reports and estimations.

6.2.2 Theoretical Model Building

The theoretical model building task contained two lines of action, which
were conducted simultaneously. One procedure was to construct causal-loop
diagrams for some essential factors from table 6.1, in order to get a basic
understanding of the feedback concepts. The included factors were chosen
after discussions with experienced developers. The diagrams are
comprehensive in a long-term view, concerning the development process
during several projects.

The first diagram, figure 6.2, illustrates how the schedule pressure affects
the rate of finished work. Schedule pressure is an important factor since it
often occurs in the delayed projects at ECS. According to Abdel-Hamid
[12], schedule pressure can play a significant motivational role on the
productivity. An increase in schedule pressure contracts the project
members� slack time. Slack time is the fraction of project time lost on non-
project activities, for example coffee breaks. Unfortunately, the trade-off is
that the error generation rate increases with a higher schedule pressure.
Shneiderman [12] suggests that schedule pressure increase the anxiety levels
of the programmers who tend to make more errors. Abdel-Hamid claims
that �In the struggle to deliver any software at all, the first casualty has been
consideration of the quality of the software delivered.� More errors
generated makes the rate of finished work lower and therefore increases the
schedule pressure.

Since there is an odd amount of �o� in the right loop, it is called balancing
and is characterised with a �balance beam�. An increase in schedule
pressure also increases the error generation, which in turn decreases the
work rate that decreases the schedule pressure. This, on the other hand, is a
reinforcing loop, since it contains an even amount of �o�, and is
characterised with a �snowball�.

Figure 6.2 Effects of schedule pressure on productivity and error
generation [12]

Schedule
pressure

Work rate

ProductivityError
generation

S

S

O

O

S

Execution of the Simulation Study

41

The next diagram, figure 6.3, shows a reinforcing loop, which covers
several projects. This diagram visualises how the resources affect the
product quality and the project lead-time, which is a relation that is asked
for in the questions in chapter 6.1.1. A decrease in resources gives a product
with decreased software quality and more rework is needed. More rework
gives a longer lead-time, which in turn increases the total costs. An increase
in the total costs affects the resources available for the next project.

Figure 6.3 A reinforcing loop, with factors that affect the forthcoming
project.

The third causal-loop diagram illustrates some factors in the requirement
phase, see figure 6.4. The diagram shows, in another approach, how the
schedule pressure affects the quality, but this time specifically in the
requirement phase. The specification accuracy is a measure of how precise
and well constructed the requirement specification is. If the specification is
inaccurate, i.e. of low quality, it has to be reworked during the project,
which leads to an increase in the amount of unfinished requirements. An
increase in unfinished requirements and thereby an increased amount of
rework leads to higher schedule pressure. This decreases the time available
for review and therefore the specification accuracy gets less precise.

Figure 6.4 A reinforcing loop for the requirement phase

Amount of
review

Specification
accuracy

Unfinished
requirementsSchedule

pressure

S

O

S

O

Resources

Software
quality

ReworkLead-time

Costs

S

O

S

S

O

A System Dynamics Simulation Study of a Software Development Process

42

At the same time as the causal-loops were built, influence diagrams were
constructed, see figure 6.5 and 6.6. With assistance from the supervisors at
ECS, the factors in table 6.1 were regarded in respect to the quality and the
time in each phase of the process. The factors that were considered to affect
the lead-time the most were chosen to be included in the influence diagrams.
Influence diagrams for the requirement and test phases were built to show
how these factors, in some cases reworked, affect the lead-time and the
software quality. Each factor�s importance for each phase was considered
together with the relationships between the factors.

Most of the factors in the influence diagrams were taken directly from table
6.1, but some were changed, for example number 14, Rate of Requirement
Change, which was divided into Inadequate Requirements and Amount of
New Market Requirements. Inadequate Requirement occurs when the
Requirement Specification Accuracy is not high enough while the Amount
of New Market Requirements increases because the total lead-time for the
project is so long that the market requirements have time to change.
Inadequate Requirements affect the amount of defect code that is produced
in the design and implementation phases. In this thesis factor number 19,
Software Size and Complexity, is equal to Functionality. Productivity does
not affect the quality, and is thereby not seen in table 6.1, but is an
important factor for the time in each phase.

Figure 6.5 Influence diagram for the requirement phase

Amount of New
Market

Requirements

Communication
Level

Inadequate
Requirements

Time in Requirement
Phase

Specification
Accuracy Number of

Personnel

Personnel
Experience

Budget
Pressure

Functionality

Amount of
Review

Productivity

Schedule
Pressure

Amount of
rework

Execution of the Simulation Study

43

The test phase in the model was divided into two parts, testing and
correction, since the two tasks are performed separately. The testing
includes the functional, system, and acceptance tests that are performed
between MS 3.5 and MS 6 in the product process.

In the model, the Amount of Defect Code originates from the design and
implementation phases and therefore gives the impression that no faults are
generated in the test phase. Instead there is an Errors Undiscovered-variable
that is affected by the Amount of Defect Code and several different factors
that affect the result in the test phase.

Figure 6.6 Influence diagram for the test phase

Time in Test

Number of
Correcting
Personnel

Communication
Level in Correction

Functionality

Time in Test Phase

Time to
Correct Faults

Test Tools

Test
Specification

Test
Method

Functionality Number of
Test

Personnel

Amount of
Defect
Code

Testing
Experience

Communication
Level in Test

Schedule
Pressure

Budget
Pressure

Amount of New
Market

Requirements

Productivity in
Correction

Productivity in
Test

Errors Undiscovered

Correcting
Method

Correcting
Experience

A System Dynamics Simulation Study of a Software Development Process

44

6.3 Simulation Operation

In the third phase of the simulation study, the theoretical model was built in
the simulation tool, see figure 5.1. The construction started with a draft of
the process model, which was then increased to include the two process
phases and their relevant parameters. The final model is available in
appendix A.

6.3.1 Model Translation

The whole idea behind the model of the requirement phase is based on a
flow of tasks, from customer requirements to finished specifications, see
figure 6.7.

Figure 6.7 The requirement phase as a black box

Inside the requirement phase there is a transformation from uncompleted to
completed tasks by the production of specifications. A fraction of the
specifications are not acceptable and needs to be taken care of in the rework
loop, see figure 6.8.

Figure 6.8 The basic flows in the requirement phase

The test phase in the model is based on the same idea as the requirement
phase and is built in a similar way. A flow of test cases is performed, a
certain percentage has to be corrected, and the rest is supposed to be
acceptable.

Requirement phase Customer
requirements

Finished
specifications

Rework

Production

Uncompleted

Finished_SpecificationsCustomer_Requirements

Completed

Execution of the Simulation Study

45

This basic model was built in Powersim and further developed with help
from the factors in the influence diagrams. The causal-loop diagrams were
also considered during the development, to ensure that the model was
adapted to systems thinking, but the parameters were chosen from the
influence diagrams.

The factors from the influence diagrams were added as auxiliaries and
constants to control the flows. To avoid getting a too complex model, all of
the factors in the influence diagrams were not included in the simulation
model. The factors included were regarded to be easier for the management
to affect than the ones excluded. Some factors were included indirectly in
the parameters in the model. These can be extracted from the parameters
and thereby possible to affect from the user interface.

The construction was made step by step, by adding a few factors at a time
and then running the simulation. The values of most of the auxiliaries and
constants are taken from [22] and software literature [2]. Some values were
estimated by iteration and verified by discussions with the supervisors at
ECS.

6.3.2 Verification and Validation

During the development of the model and its parameters, the model was
continuously verified and validated.

The verification is concerned with building the model right, i.e. confirming
that the right parameters have been used. A comparison of the theoretical
model to the computer representation was performed. This was made by
comparing the influence diagrams in chapter 6.2.2 with the simulation
model built in Powersim. The verification also included comparing the time
in the simulation to the time according to the report [22] to ensure that the
estimations were correct.

The validation aims at building the right model, i.e. determining that the
model is an accurate representation of the reality. Validation involves
checking that the model meets the expectations of the assignor. This was
made through discussions with the supervisors at ECS.

6.3.3 Simulation

The final model was run in three sets of simulations to answer different
kinds of questions, mentioned in chapter 6.1.1. These three sets of
simulations showed: how the lead-time was affected by the amount of effort
spent in the requirement phase, if the human resources in the test phase were
fully used, and how a change in human resources in the test phase would
affect the lead-time.

A detailed description of all the parameters and the model can be seen in
appendix A. The values taken from [22] are summarised in appendix B.

A System Dynamics Simulation Study of a Software Development Process

46

6.4 Conclusion

This chapter has described the execution of the three phases in the
simulation study: problem definition, simulation planning and simulation
operation. The next chapter presents the results from the simulations of the
final model.

Results and Analysis of the Simulation

47

7 Results and Analysis
of the Simulation

The final model was simulated in two sets, called Case 1 and 2. This
chapter presents the results of these cases and the analysis of them. The
results are given in precise figures but since this is a system dynamics
model, the results shall be interpreted qualitatively. It is the tendencies
in the graphs that are important and not the exact percentages.

7.1 Case 1

Case 1 was performed to show how a relocation of resources to the
different process phases affects the quality of the software product and
the lead-time of the project, which was discussed in the two last
questions in chapter 6.1.1.

7.1.1 Simulation of Case 1

The final model was run several times with different values of the
percentage of the planned effort in the whole project spent on the
requirement phase, see table 7.1. The values ranged from 8 to 13 % and
the value from this particular project was 9 %.

A System Dynamics Simulation Study of a Software Development Process

48

Table 7.1 Results from Case 1

% in Req ReqEffort TestTime TestEffort TotalTime Errors
8% 23 267 174 623 252
9% 25 236 153 585 222
10% 28 211 137 558 179
11% 31 198 129 547 158
12% 33 193 125 546 153
13% 37 192 125 551 156

The outputs, in case 1, were the real effort spent on the requirement
phase, the time in the test phase, the effort in the test phase, the total
lead-time of the project and the number of errors that are not
discovered. The test effort is based on 3 testers and 10 correctors
working full time. The total time is the sum of the time consumption in
each phase, which is possible since the design and implementation
phases are modelled as a delay, according to appendix A. The units of
the efforts are man-months, the units of the times are working days and
the errors are a relative measure of the quality.

Figure 7.1 The total lead-time for different percentages of the effort
spent in the requirement phase

The simulation runs indicate that the effort spent in the requirement
phase has a pronounced effect on the lead-time of the project, see
figure 7.1. The decrease in days, when increasing the effort in the
requirement phase, arises from the increased specification accuracy. A
more accurate specification facilitates the implementation and
decreases the error generation and will result in a higher quality
product from the start. This decreases the amount of necessary
correction work and thereby shortens the time spent in the test phase.
At a certain point the total lead-time will start to increase again because
the time in the test phase levels while the time in the requirement phase
continues to increase. The time in the test phase levels because there is
always a certain amount of functionality that shall be tested at a
predetermined productivity.

540

570

600

630

8% 9% 10% 11% 12% 13%

Percentage of effort in the Requirement phase

N
um

be
r

of
 d

ay
s

Results and Analysis of the Simulation

49

The errors, which are seen as a measure of the quality, were also
considered during the simulation in case 1.

Figure 7.2 The number of undiscovered errors for different
percentages of the effort spent in the requirement phase

The amount of errors that are not discovered in the test phase decreases
when the effort in the requirement phase increases because the error
generation is lower when the specification accuracy is higher, see
figure 7.2. When the total lead-time is increased again, according to
figure 7.1, the amount of new market requirements, that has been
considered, also increases. Therefore there is a slight increase in the
curve since these new market requirements generate more errors.

7.1.2 Comparison with Other Estimating Methods

The COCOMO model, described in chapter 2.3.2, can also be used to
estimate the total effort to develop software. In this case the produced
code volume is 115,5 KLOC and the mode most suitable in this case is
Organic.

3525.1154.2 05.1 =∗=∗= bKLOCaE man-months

If the effort in this project [22] had been estimated according to above
and the effort in the requirement phase had been planned to be 9 % as
was the case in this particular project, then the effort would have been
9%*352=32 man-months. This is comparable to the ReqEffort in
table 7.1, where the minimum for the errors occurs at approximately
33 man-months.

According to software literature [2] the percentage of the total effort
spent on testing, in a project of this size, shall be 30. Since the
simulation model only includes the requirement and test phases, it can
not predict the total effort. But assuming that the total effort on this
project was 352 as COCOMO suggests the test effort would be
125/352=35% of the total effort.

140

180

220

260

8% 9% 10% 11% 12% 13%

Percentage of effort in the Requirement phase
E

rr
or

sU
nd

is
co

ve
re

d

A System Dynamics Simulation Study of a Software Development Process

50

7.2 Case 2

This case was performed to show that it is possible to decrease the test
time, and thereby the total lead-time, by increasing the human
resources in the test phase.

A series of simulations were run to see how the test time was affected
by a change in the number of correcting personnel, while the number of
testers was unlimited. The graph is based on values presented in
table C.1.

Figure 7.3 The test time when the number of test personnel is not a
limiting factor

Figure 7.3 shows that the lead-time is not decreased linearly when
more correcting personnel is added. The reason for this is that the
communication problems increase when the number of correcting
personnel increases.

A similar series of simulation runs was performed with a constant, not
limiting, number of correcting personnel. The graph is based on values
that are presented in table C.2.

Figure 7.4 The test time when the number of correcting personnel is
not a limiting factor.

170

190

210

230

250

8 9 10 11 12 13 14 15 16 17 18

NbrOfCorrectingPersonnel

N
br

O
fD

ay
s

150

180

210

240

270

2.5 3 3.5 4 4.5 5 5.5 6

NbrOfTestPersonnel

N
br

O
fD

ay
s

Results and Analysis of the Simulation

51

Figure 7.4 shows that the lead-time is decreased, but not linearly, when
more test personnel is added. The curve in figure 7.4 does not level as
much as the curve in figure 7.3. This is because the communication
problems among the testers are not as noticeable as among the
correctors since the testers are fewer.

7.3 Conclusion

The simulations increase the user�s understanding about the process
mechanisms since the simulations visualise the different parameters�
effect on each other and on the system.

The results from the different cases have been presented and analysed
in this chapter but shall be interpreted qualitatively. The next chapter
consists of an evaluation of the simulation tool that was used
throughout these simulations.

A System Dynamics Simulation Study of a Software Development Process

52

Evaluation of Powersim Studio 2000

53

8 Evaluation of
Powersim Studio 2000

The first version of Powersim was developed in the 1980s in Norway.
It has been developed to become an integrated environment for
working with simulation models, and in these days many multinational
companies all over the world are using this program to make strategic
decisions.

At the stage when the choice of simulation tool was made, the available
tool was an earlier version, Powersim Constructor Lite. The choice of
simulation tool, for this simulation study, was therefore based on the
features and functions of this old version. When it was time for the
purchase, in November 2000, a new version was released, the
Powersim Studio 2000.

There are three different versions of the Powersim Studio 2000:
Enterprise, Standard, and Express. According to [24] the Enterprise is
the full-scale platform for commercial business users and includes
cross application communication. Standard offers full simulation
capabilities but does not include cross application communication,
while Express is a free platform that limits the number of variables to
150 and is ideal for students and academics with less complex
modelling needs. The one most suitable for the assignment at ECS was
the Standard version.

A System Dynamics Simulation Study of a Software Development Process

54

Three major disadvantages with Powersim Studio 2000 Standard were
found during the simulation study.

One of the selection criterions for the choice of simulation tool in this
thesis was that Powersim already was in use at another company at
Ericsson. However, at the time of the delivering of the simulation tool
it appeared that it was not very easy to convert models, created in the
old versions of Powersim, to the new one, Powersim Studio 2000. This
is because there is a big difference between the old and new tool so the
converting results in a number of errors. It may be possible to adjust
the converted model if the modeller has knowledge about the
appearance and performance of the old model. The graphics are
deformed at the conversion and some functions are defined differently
in the two tools and therefore it takes a lot of effort to make the old
model work in the new tool.

There is no easy and straightforward possibility to present the
simulation results from Powersim Studio 2000 in another type of
document, for example Microsoft Word. To convert a sheet from
Powersim Studio 2000 it is necessary to copy a bitmap of the active
window to the clipboard and then paste it into Word. Thus, a bitmap is
made, instead of a Windows metafile. This will result in a low quality
of the picture.

The Standard version, unlike the Enterprise version, does not include
any possibilities of connecting data from external files or data sources
to or from the simulation. This can be useful when a number of
simulation runs, with different inputs, are to be performed and
compared.

Some minor disadvantages were also found during the simulation
study, which made it difficult to interpret the results. The tool
transforms the calendar units automatically to a unit without decimals
when it is possible. In other cases the tool chooses a unit so that the
value is between 1 and 10. This can result in an output given in the unit
quarter for one simulation run but the same output can be given in the
unit weeks in another run. There is no possible way to control this
transformation which complicates the comparison of different
simulation runs.

In Powersim Studio 2000 three different calendar types exist: with leap
year, without leap year and an alternative consisting of 360 days. Thus,
there is no calendar type that considers weekends, i.e. using a working
week of five days. The consequence of this is that the finishing date
delivered by the tool is of no relevance, since it is not comparable to
the real date.

When presenting output values from the simulation in a table control,
the tool shows the exact value, even if it means including ten decimals.
There is no possibility to change the number of decimals and this

Evaluation of Powersim Studio 2000

55

makes the appearance of the presentation of the output parameters
unpleasant.

Nevertheless, a number of improvements have been made in Powersim
Studio 2000, compared to the old version. These improvements are not
of general nature, but give a more professional impression.

The graphics have been noticeably enhanced. The toolbar has been
extended and the symbols are clarified. In the new version it is possible
to add more than four flows from each level without overlapping,
which makes it easier to read the sheets that illustrate the models. It is
also possible to change the size of the details, for example the levels
and flows, which increases the visibility in complex models.

There are several ways to view the value of the variables; an easy way
is to add a number auto report or time graph auto report in the sheet.
This new function is a small box, located close to the variable, in which
the value is viewed during the simulation run.

In the new version of Powersim it is necessary to define units in the
variable�s property dialog box. This was at the start of the simulation
both annoying and time consuming to consider, when the only
intention was to make small drafts to test different ideas. However, this
feature forces the modeller to carefully reflect on the model�s
construction a second time, to ensure that the units are correctly
calculated through the whole model.

Powersim Studio 2000 is to a great extent a satisfactory simulation tool
with good graphics and thoroughly worked through construction. But
unfortunately it seems like the new Powersim version was released
under stress and therefore contains some major defects, which is a pity
since it in other respects is a great tool. These defects will hopefully be
corrected when the new version of the tool is released in May 2001.

A System Dynamics Simulation Study of a Software Development Process

56

Discussion

57

9 Discussion

This chapter summarises the whole simulation study and discusses
thoughts that turned up during this study. The chapter also includes
ideas for future development of the simulation model to increase its
reliability.

9.1 Summary

This thesis was performed at Ericsson Mobile Communications AB in
Lund from October 2000 to March 2001. There was a desire to increase
the quality of the developed software and to improve the processes that
are used for software development. To be able to make these
improvements, the knowledge about the process behaviour had to be
expanded. This awoke the interest to build models of the processes and
to simulate these models. These models could help to visualise the
mechanisms of the software processes that affect the quality.

The result from this thesis is a simulation model that visualises
different relations in ECS�s software development process. The work
has also resulted in a collection of quality factors and their connections,
which are illustrated in the influence diagrams and causal-loop
diagrams. The report can be used to increase the competence on
modelling and simulation of software processes.

A System Dynamics Simulation Study of a Software Development Process

58

The developed model is limited to include the requirement phase and
the test phase. One of the problems at ECS is the allocation of
resources in the projects. The model illustrates how a changed amount
of resources in the requirement phase affects the time in the test phase,
the total lead-time and the quality of the final product.

The model was used for two different types of simulations. The first
series of simulations considered the resource allocation between the
process phases, while the second one handled the resource allocation
within the test phase.

The results from the first type of simulation were compared to the
outcome of the project [22]. These showed that an increased amount of
effort spent in the requirement phase would have shortened the time in
the test phase and thereby the total lead-time. The simulations also
showed that the quality would have been improved if the amount of
effort spent in the requirement phase had been increased.

The second type of simulation concerned resource allocation between
the testers and the correctors in the test phase. The simulation showed
that the time in the test phase could not be decreased by only adding
human resources to either the testing or the correcting group, but the
resources had to be increased to both of them simultaneously.

The results from the simulations shall not be interpreted quantitatively
since it is a system dynamics model. Therefore the values of the output
parameters are not the essential part of chapter 7 where the results of
the simulations are presented. Instead it is important to notice the
tendencies of the increase and decrease that can be seen in the figures
7.1-7.4. This qualitative view also implies that the input parameters in
the simulation model do not have to be precise but it is whether the
parameters have an increasing or decreasing effect that is important.

One way of defining the input parameters is to let the model user
control them from the user interface. However, the pronounced
direction of this thesis was to build a specific model of a process at the
department of Software Applications at ECS. To avoid generalising the
model the parameters were set at specific values, instead of using the
parameters as inputs that are changeable from the user interface.
Assumptions were made about these specific values and to further
improve the reliability of the model, these values need to be more
carefully monitored and measured.

In order to be able to develop the model further, the model is built to be
basic and easy to understand. Therefore many of the factors that affect
the quality are excluded in the current model. These factors and their
relationships are available in the influence diagrams for the
requirement and the test phase, and can in the future be included in the
model.

Discussion

59

The major part of the knowledge gained from simulations is brought
about in the model building process. The system dynamics model itself
can be thought of as a by-product. The procedure to build a model
forces the participants to communicate their mental models to create a
common image of the organisations new direction. This implies that
the decision-makers themselves should build their own models, with
help from this report, to increase their awareness of the process
mechanisms.

The supervisor at ECS wished to examine if a System Dynamics model
is useful for modelling their software development process. We think
that simulations of this kind are valuable when the purpose is to
visualise process mechanisms and increase the awareness of how
different factors affect the software quality. It can also be used to
increase the motivation of the staff members to work with quality
issues and to increase the product quality early in the project. But this
kind of model should not be used for optimisation since the basic idea
with System Dynamics models is to interpret them qualitatively.

Though, if the purpose is to calculate a reliable optimum it is necessary
to create a discrete model instead of a continuous. This would require
more detailed data than what is available at ECS at this moment. The
base of our model could have been created as a discrete model since it
is a sequence of activities. But a discrete model could not have taken
into consideration the dynamic variables that are used, like for example
SchedulePressure.

9.2 Further Development of the Model

There are a number of possibilities to further develop the model in
order to increase the reliability and to make the model provide a better
image of the reality. To be able to understand all the proposed changes
in this chapter it is necessary to have knowledge of how the model
works and is constructed.

During the building process, several assumptions of the values of the
parameters had to be made, since there were no existing data of the
parameters. The parameters that were found to be inadequately
measured are presented below with suggestions of further
development.

The value of NewMarketReqRate describes how many of the changed
market requirements that are taken into consideration. It was taken
from [2] but if the value had been measured, the model would be more
specific for the processes at ECS. An even more accurate description of
reality would be accomplished by letting the NewMarketReqRate
depend on the project deadline. The intention is to take fewer market
requirements into account when closing in on the deadline.

A System Dynamics Simulation Study of a Software Development Process

60

In the current model the parameter ChangeManagement considers all
the work that is needed for the new market requirements, from
requirement specification to design and implementation. This value is
calculated iteratively and should require a more accurate value.
Another alternative is to put the inflow of the new market requirements
in the requirement phase in the model instead. In that way the new
market requirements would be taken into account by the earlier phases
so that the model better resembles the reality. However, this requires a
major change in the model since in that case the phases have to work
simultaneously.

To get a more accurate value of the amount of effort that is spent on
each phase it is necessary to improve the time reports at ECS so that all
the activities can be connected to the right process phase. This might
result in a better estimation of the number of personnel in each phase. It
would also give a better estimation of the productivity in each phase
that can be used instead of the current values. The communication
problems that affect the productivity in larger teams can be modelled
separately with assistance from [12].

The productivity in the requirement phase is not modelled in the same
manner as the test productivity and the correction productivity. It is
possible to let the requirement productivity depend on the number of
personnel in the requirement phase in the same way as the test
productivity. Since the requirement productivity in its present
appearance takes the planned project time into consideration, it would
require great restructuring effort to the model. If this change is made it
is necessary to add a parameter that indirectly affects the time
consumption in the phase, by affecting the ReqProductivity. One way
of solving this problem is to add a parameter that considers the amount
of review work. This parameter would be affected by ReqPart. The
amount of review would also affect how much of the specifications that
would be reworked.

The parameter ReworkPart could be estimated more accurately if
ReqProductivity had received a more proper value. This could be made
by iterating ReworkPart until the time spent in the requirement phase in
the model is equal to the actual time according to the modelled project.
By comparing different versions of the specification documents, a
value of how much of the document that has been rewritten could be
estimated. Another alternative is to have the parameter as a changeable
input controlled from the user interface. In that way the user can
change the amount of rework and thereby the specification quality. A
third possibility is to add more variables, for example the amount of
review and the requested specification quality, that affect the amount of
rework.

The output quality of the finished specifications, InadequateReq, is
given an estimated normal value in the current model. This value could
be estimated more carefully by letting the personnel in the forthcoming
phases register which errors that originate from incorrect

Discussion

61

specifications. It is also possible to add more factors that affect this
parameter, for example schedule pressure and personnel experience.

The parameter InadequateReq affects the CorrectionPart in the test
phase since an inadequate specification quality requires more
correction. The value of the CorrectionPart can be better estimated by
measuring how much of the code that has to be corrected. In a further
developed model the CorrectionPart could be affected by more
parameters. These additional variables can for example be
SchedulePressure that is compared to the approaching deadline.

The parameter SchedulePressure in the current model can be divided
into two different factors. One part only considers the
SchedulePressure, which will increase with the time and another that
controls the nominal number of errors committed per function point. In
this way the ErrorRate will be affected by these separate parameters
and possibly additional parameters of an organisational type, for
example personnel experience and degree of structured techniques.

The current model only represents the requirement phase and the test
phase but the phases in between are considered in the total lead-time
and the test phase does not start until they are finished. This time
consumption is currently affected by the specification quality but it
could be possible to measure how the specification affects the time in
each phase in order to get a better estimation of this value. The time
consumption is in reality affected by several other factors and to model
the phases in between should give a more realistic image of the real
process. These phases can be modelled in a similar way as the
requirement and test phases.

In the current model the time consumption in the requirement phase is
controlled by the planned requirement effort while the time in the test
phase goes by until the test tasks are completed without any concern of
the planned test effort. In a future model the test phase can be
controlled similarly to the requirement phase but this kind of model
would be answering a different kind of questions. A model of this kind
can only predict the software quality for a given amount of effort.

In the future it is possible to let the model illustrate the platform
process instead of the product process, which was the intention at the
beginning. The current model points out which parameters that need to
be monitored in order to get a more reliable model. The same
parameters need to be monitored when adjusting the model to the
platform process, which will be possible when more platform projects
have been concluded.

9.3 Conclusion

After the summary of this simulation study several different ideas
about future development of the model were discussed. There are other

A System Dynamics Simulation Study of a Software Development Process

62

development possibilities that have not been considered in this chapter
but there is not room for including all of them within the limits of this
thesis. However, the developed model is a good foundation for further
development in suitable directions.

References

63

References

[1] Ian Sommerville, Software Engineering, Addison-Wesley,

1996

[2] T. Capers Jones, Estimating Software Cost, McGraw-Hill,

1998

[3] Norman E. Fenton, Shari Lawrence Pfleeger, Software

Metrics: A Rigorous & Practical Approach, International
Thomson Computer Press, 1996

[4] Ioana Rus, James S. Collofello, Assessing the Impact of Defect

Reduction Practices on Quality, Cost and Schedule, ProSim
2000, London UK

[5] Frederick S. Hillier, Gerald J. Lieberman, Introduction to

Operations Research, McGraw-Hill, 1995

[6] Robert Martin, David Raffo, A Model of the Software

Development Process Using both Continuous and Discrete
Models, International Journal of Software Process
Improvement and Practice, 5:2/3 June/July 2000

[7] Paolo Donzelli, Giuseppe Iazeolla, Hybrid Simulation

Modelling of the Software Process, ProSim 2000 London, UK

[8] Robert Martin, David Raffo, Application of a Hybrid Process

Simulation Model to a Software Development Project, ProSim
2000, London, UK

[9] Lars Randell, A Methodology to Reduce Time Consumption in

Discrete-Event Simulation Projects, Lund University, 2000

[10] Peter M. Senge, Den femte disciplinen, Nerenius & Santérus

förlag, 1999, (In Swedish)

[11] Introduction to Simulation, Powersim Corporation 2000

[12] Tarek Abdel-Hamid, Stuart E. Madnick, Software Project

Dynamics: An Integrated Approach, Prentice Hall, 1991

[13] Peter M. Senge, Art Kleiner, Richard Ross, Bryan Smith,

Charlotte Roberts, The Fifth Discipline: Fieldbook, Nicholas
Brealey Publishing, 1999

[14] �Extend introduction�, www.imaginethatinc.com, visited

001204

A System Dynamics Simulation Study of a Software Development Process

64

[15] Personal commentary: Jennie Nilsson, Ericsson Mobile
Communications AB, Lund, Sweden, 001017

[16] �ECS homepage�, ecs-lund.ericsson.se/lund, visited 001020

[17] PROPS - A General Model for Project Management in a

Multiproject Organization, Ericsson Infotech AB, 1999

[18] Niklas Sundgren, Product Platform Development-Managerial

Issues in Manufactural Firms, Chalmers University of
Technology, 1998

[19] Banks, Carson II, Nelson, Discrete-Event System Simulation,

Prentice Hall, 1996

[20] Claes Wohlin, Per Runesson, Martin Höst, Magnus C.

Ohlsson, Björn Regnell, Anders Wesslén, Experimentation in
Software Engineering: An Introduction, Kluwer Academic
Publisher, 2000

[21] Marc I. Kellner, Raymond J. Madachy, David Raffo, Software

Process Simulation Modelling: Why? What? How?, Journal of
Systems and Software, vol. 46 no.2/3, April 1999

[22] Wladyslaw Bolanowski, Final report for <a sub-project>,

Ericsson Mobile Communications AB, 2000

[23] Personal commentary: Sarah S. Apsey, PA Consulting group,

Cambridge, MA, USA, 001213

[24] �Powersim introduction�, www.powersim.com/product, visited

010105

Bibliography:

Banks, Carson II, Nelson, Discrete-Event System Simulation, Prentice
Hall, 1996

Peter Henderson, Yvonne Howard, Simulating a Process Strategy for
Large Scale Software Development using Systems Dynamics, ProSim
1999, Silver Falls, USA

G. Kahen, M.M. Lehman, J.F. Ramil, P. Wernick, Dynamic Modelling
in the Investigation of Policies for E-type Software Evolution, ProSim
2000, London UK

Peter Henderson, Yvonne Howard, Robert John Walters, A Tool for
Evaluation of the Software Development Process, ProSim 2000,
London UK

References

65

David I. Cleland, Project Management, Strategic Design and
Implementation, McGraw Hill, 1995

Bengt Savén, Produktionssimulering, Mekanförbundets förlag, 1998
(In Swedish)

Per Darmer, Per V. Freytag, Företagsekonomisk
undersökningsmetodik, Studentlitteratur, 1995 (In Swedish)

Anders Sixtensson, System Dynamics � A Way to Improved Project
Performance, Kipling

Bo Bergman, Bengt Klefsjö, Kvalitet från behov till användning,
Studentlitteratur, 1995 (In Swedish)

Raymond J. Madachy, Barry W. Boehm, IEEE Computer Society
Press, www-rcf.usc.edu/~madachy/spd, visited 001025

David N. Ford, John D. Sterman, Dynamic Modelling of Product
Development Processes, System Dynamics review, vol. 14 (1), 1998

A. Drappa, J.Ludewig, Quantitative Modelling for the Interactive
Simulation of Software Projects, Journal of Systems and Software, vol.
46, 1999

Barry Richmond, Systems Thinking: Critical Thinking Skills for the
1990s and Beyond, System Dynamics Review, vol. 9, no 2, 1993

Jay W. Forrester, System Dynamics, Systems Thinking, and Soft OR,
System Dynamics Review, vol. 10, no 2, 1994

John D. Sterman, A Sceptic�s Guide to Computer Models, Managing a
Nation: the Micro Computer Software Category, Westview Press, 1991

George P. Richardson, Problems with Causal-Loop Diagrams, System
Dynamics Review, vol. 2, no 2, 1986

Derek Merrill, James S. Collofello, Improving Software Project
Management Skills Using a Software Project Simulator,
www.eas.asu.edu/~sdm, visited 001102

James S. Collofello, Ioana Rus, VishnuDev Ramakrishnan, Charles
Musco, Kevin Dooley, Using Software Process Simulation to Assist
Software Development Organisations in Making Good Enough Quality
Decisions, www.eas.asu.edu/~sdm, visited 001102

A System Dynamics Simulation Study of a Software Development Process

66

Appendix A

67

Appendix A
The Simulation Model

This appendix describes the model, both the connections between the
parameters and the definition of the each parameter. The first two
figures show the requirement phase and the test phase, while the third
one, the Helpdesk, shows complementing parameters that is required to
get a well-functioning model. This includes parameters that survey
when the phases are in action and parameters that calculate the time
consumption in each phase.

A System Dynamics Simulation Study of a Software Development Process

68

The Requirement Phase

Appendix A

69

The Test Phase

A System Dynamics Simulation Study of a Software Development Process

70

The Helpdesk

Appendix A

71

Definition of Parameters

The units used in the model are either function points, days or a
combination of these. In the following text function points are
abbreviated to FP.

The unit day means in the definition below calendar day, but the unit
man-day is also used as an explanation of how many days it would take
for one person to finish the task. This is often used in the model as the
effort necessary to accomplish the task. The unit working day does not
consider weekends. In some of the definitions below the constant 20 is
included to transform the parameter from calendar days to working
months or vice versa. In Powersim one month consists of 30 working
days, there are no possibilities to change it to the normal 20 working
days per month.

ActualProjectTime is an output that shows the number of days
required to finish the project. The value of this level is, with help from
CalendarProject, increased by one every day that MS 6=0.

ActualReqTime is an output that shows the number of days required
to finish the requirement phase. The value of this level is, with help
from CalendarReq, increased by one every day that MS 2=0.

ActualTestTime is an output that shows the number of days required
in the test phase. The value of this level is, with help from
CalendarTest, increased by one every day that MS 3.5=1 and MS 6=0.

CalendarReq keeps track of when MS 2 is reached.

If MS 2<1 then

CalendarReq=1
else

CalendarReq=0

CalendarProject keeps track of when MS 6 is reached.

If MS 6<1 then

CalendarTest=1
else

CalendarTest=0

CalendarTest keeps track of when the test phase is in progress.

If MS 6=0 and MS 3.5=1 then

CalendarTest=1
else

CalendarTest=0

A System Dynamics Simulation Study of a Software Development Process

72

ChangeManagement),8.0(MarketReqMin=
This variable considers the new market requirements that shall be
specified, designed and implemented at a rate of 0.8 FP/day. The rate is
iteratively calculated to get a slight effect on the time in the test phase.

Correction is a level with the initial value 0. During the simulation it
contains the tasks that shall be corrected and is emptied by the flow
controlled by CorrectionRate.

CorrectionAmount regulates the flow of tasks to be corrected. While
the project is running, i.e. MS 6 is not yet reached, the flow continues.

If MS 6=0 then

CorrectionAmount=CorrectionPart*
TestTasksCompleted

else
CorrectionAmount=0

CorrectionPart decides how much of the test tasks that needs to be
corrected and is assumed to be an S-shaped graph with values between
25 and 47 % depending on InadequateReq/InitialFunctionality. The
value 25 % is assumed to be a minimal value of the amount of defect
code delivered to the test phase when InadequateReq/Initial
Functionality reaches its lowest possible value. In addition to this, a
bad requirement specification will increase the CorrectionPart up to
47 % as the amount of InadequateReq increases.

Appendix A

73

CorrectionProductivity decides the amount of correction that is made
in one day. It is a graph depending on NbrOfCorrectingPersonnel,
where one person corrects 0.5 FP/day, which is a value that has been
calculated iteratively. The productivity/person decreases when the
amount of personnel increases, because the communication level
decreases [12].

CorrectionRate =),(CorrectiontyProductiviCorrectionMin

Controls the rate of the flow of tasks from correction and is either equal
to CorrectionProductivity or the remaining part of the tasks to be
corrected. The unit is FP/day.

CustomerRequirements

)3000,,(StartTimectionalityInitialFunPulse=
Controls the inflow of customer requirements into the requirement
phase. The amount InitialFunctionality arrives at StartTime and the
interval to the next pulse is 3000 days, which occurs after the project is
finished since the intention is to simulate only one project at a time.

DelayMS 3.5
ReqPart

155
195 ∗=

Describes the time that is left for the Design- and Implementation
phases, i.e. the time between MS 2 and MS 3.5. In the normal case it is
195 days, which is calculated in appendix B. The constant 155/ReqPart
increases the Delay MS 3.5 when ReqPart decreases since the
requirement specifications are less accurate and therefore the design
and coding takes more time.

DelayStopTime is an input parameter set to an appropriate value so
that the test loop has time to finish and MS 6 has not yet changed its
value 1. In this case it is 70 days.

Effort is a constant that describes how much effort that was used in
this particular project and has the value 278 man-months [22].

A System Dynamics Simulation Study of a Software Development Process

74

EffortInReq rsonnelNbrOfReqPe
imeActualReqT ∗=

20

Indicates the actual effort spent in the requirement phase. The unit is
man-days.

EndOfReq empties FinishedReq in order to transfer the functionality
to the test phase.

If MS 3.5=1 then

If FinishedReq>0 then
EndOfReq=FinishedReq

else
EndOfReq=0

else
EndOfReq=0

ErrorRate ompletedTestTasksCssureShedulePre ∗=
ErrorRate controls the flow of errors and is increased by an increased
ShedulePressure. When there is no schedule pressure, 5 % of the tested
functionality is assumed to be incorrect but not discovered. The unit is
FP/day.

ErrorsUndiscovered is an output parameter that counts the errors
remaining in the software after the test phase. The unit is FP.

FinishedReq is a level where the specifications are stored when they
are specified.

FinishedTests is a level where the tested and approved functionality is
stored.

FinishingReqRate controls the amount of the finished specifications,
which does not need to be reworked or is assumed to flow directly to
InadequateReq. The unit is FP/day.

If Time<(StartTime+ReqPart) then

FinishingReqRate=(1-ReworkPart-
0.1*155/ReqPart)*ReqTasksCompleted

else
FinishingReqRate=0

Appendix A

75

FinishingTestRate controls the flow of tested functionality, which
does not need to be corrected, or is assumed to flow directly to
ErrorsUndiscovered. The unit is FP/day.

If MS 6=0 then

FinishingTestRate=(1-CorrectionPart-
ShedulePressure)*TestTasksCompleted

else
FinishingTestRate=(1-ShedulePressure)
*TestTasksCompleted

FunctionalityToTest controls the amount of functionality to be tested.
When the requirement-, design- and implementation phases are
finished, all the functionality arrives to the test phase as a pulse.

If MS 3.5=1 then

If FinishedReq>0 then
FunctionalityToTest=
InitialFunctionality

else
FunctionaliyToTest=0

else
FunctionalityToTest=0

InadequateReq is a level that counts the inadequate specifications in
FP.

InadequateReqRate controls the amount of specifications that is
incorrect. 10 % of the specifications made during the requirement
phase are incorrect in the normal case. But when ReqPart is decreased
from 155, the amount of incorrect specifications increases and when
ReqPart increases, the amount of incorrect specifications decreases.
After ReqPart has passed, the remaining functionality that is not
specified is forwarded to InadequateReq since the design phase starts at
this time.

If Time>=(StartTime+ReqPart) then

InadequateReqRate=ReqTasksCompleted
else

InadequateReqRate=0.1*155/ReqPart*
ReqTasksCompleted

IndicateStop),6(imeDelayStopTMSDelayppl=
Gets the same value as MS 6 after a delay of 70 days.

InitialFunctionality 8.902
128

115558

128
=== eLinesOfCod

Transforms the amount of code into the unit function points (FP)
according to equation 2.1.

A System Dynamics Simulation Study of a Software Development Process

76

LinesOfCode is a value taken from [22] and equals 115 558 LOC.

MarketReq is a level that receives the new market requirements that
arrives each day. The level is decreased by the change management
that completes the requirements before testing.

MS 2 indicates when the requirement phase is finished.

If Runmax(FinishedReq+InadequateReq)> 0.99*
InitialFunctionality then

MS 2=1
else

MS 2=0

MS 3.5 indicates when the design and implementation phases are
finished. The design and implementation starts after the planned
requirement time, ReqPart.

If Time>(StartTime+ReqPart+DelayMS 3.5) then

MS 3.5=1
else

MS 3.5=0

MS 6 indicates when the test phase is finished, which occurs when the
market requirements are frozen and the test loop is emptied.

If MarketReq=0 then

If TestTasksCompleted<1 then
MS 6=1

else
MS 6=0

else
MS 6=0

NbrOfCorrectingPersonnel is controlled from the user interface. The
initial number of correcting personnel in the test phase is calculated in
appendix B, and is equal to 10 [22].

NbrOfReqPersonnel
The estimated number of requirement personnel is 3.2 and is calculated
in appendix B. This value is assumed to be constant since during the
requirement phase the project delay is not yet discovered and no extra
personnel is needed.

NbrOfTestPersonnel is controlled from the user interface and is the
amount of people that performs the software testing. The initial value is
calculated in appendix B and is equal to 3 [22].

Appendix A

77

NewMarketReqRate controls the inflow of new market requirements,
which is 2% per month and is based on information from [2]. New
market requirements are arriving from the start of the project.

If (FinishedTests+ErrorsUndiscovered)<((1+0.3*
0.02)*InitialFunctionality*(Time-StartTime)/20)
then

NewMarketReqRate=0.02*
InitialFunctionality/20

else
NewMarketReqRate=0

The constant 0.3 is iteratively calculated in order to freeze the new
market requirements at a suitable time, at approximately MS 4.

PlannedReqEffort
100

fortReqPerInEf
Effort ∗=

The planned amount of man-months in the requirement phase is shown
in the user interface.

ReqCompletionRate

),(dBeCompleteReqTasksToivityReqProductMin=
Controls the completion rate of the specifications and is either equal to
the productivity or the remaining part of the uncompleted tasks. This
variable solely regulates the time spent in the requirement phase. The
unit is FP/day.

ReqPart
rsonnelNbrOfReqPe

EffortfortReqPerInEf 20**100/=

Calculates the number of calendar days in the requirement phase.

ReqPerInEffort is controlled from the user interface and has an initial

value of %9
278

25 = where 25 is the approximate number of

man-months spent in the requirement phase and 278 is the total number
of man-months in the project taken from the report [22].

A System Dynamics Simulation Study of a Software Development Process

78

ReqProductivity decides the amount of specifications that is made in
one day. It is a graph depending on ReqPart, the number of personnel
in the requirement phase is assumed to be constant. This graph is
iteratively calculated from the length of the phase and the functionality
to be specified. The graph is not linear since the time in the
requirement phase depends on the amount of rework, which does not
depend linearly on ReqPart. The steeper part of the curve depends on
the higher amount of rework necessary when the planned time in the
requirement phase is shorter than the normal value. When the time is
increased there is less rework made and therefore the curve levels.

ReqTasksCompleted is a level where the specifications are gathered
before forwarded as finished, inadequate, or incorrect functionality.

ReqTasksToBeCompleted is a level that gathers the customer
requirements.

Rework controls the amount of specifications that need to be
reworked. The unit is FP/day.

If Time<(StartTime+ReqPart) then

Rework=ReworkPart*ReqTaskCompleted
else

Rework=0

Appendix A

79

ReworkPart is a graph that depends on the equation for the
specification accuracy, i.e. the x-axis is equal to

02,01 ∗−
ReqPart

ctionalityInitialFun

The constant 0.02 is empirically calculated. The fraction decides the
amount of time available for each function point that shall be specified,
which can be seen as a measure of the quality. The ReworkPart is the
percentage that shows how much of the specifications that needs to be
reworked. This value is decreased when the specification accuracy is
increased.

SchedulePressure is a graph, which affects ErrorRate to increase when
the deadline is approaching. The initial value is 0.05.

Stop)1(== opIndicateStStopIf
Stops the simulation when IndicateStop reaches 1. This mechanism is
used to avoid MS 6 from changing its value when it has reached 1. This
mechanism is necessary since MS 6 depends on Time, which increases
throughout the simulation.

A System Dynamics Simulation Study of a Software Development Process

80

TestCompletionRate
),(edoBeCompletTestTasksTtivityTestProducMin=

Controls the flow of functionality to be tested. The unit is FP/day.

TestProductivity is a graph that depends on the number of test
personnel, in which one person tests 2.9 FP/day. The
productivity/person decreases when the amount of personnel increases,
because the communication level decreases.

TestTasksCompleted is a level that gathers the tested functionality
and forwards it as finished, inadequate, or incorrect functionality.

TestTasksToBeCompleted is a level that gathers the functionality that
will be tested.

Appendix B

81

Appendix B
Values Used in the Model

This appendix presents data from [22] considered being important in
this thesis. Some units of the data have been changed to suit the units
in the simulation model. Assumptions and calculations based on the
report are also included in this context.

Table B.1 presents the planned and actual milestone passages for this
particular project. The table only presents the process phases until MS
6 since the following phases are excluded from the model.

Table B.1 Project time in working days

Period Planned Actual

MS 0-MS 2 80 80
MS 2-MS 3 125 150
MS 3-MS 3.5 135 200
MS 3.5-MS 4 20 20
MS 4-MS 5 85 65
MS 5-MS 6 40 70
Total time MS 0-MS 6 485 585

The milestone passages according to table B.1 are not used in the
model since they do not indicate when the specific tasks are completed.
Instead assumptions have been made to get a model that is closer to
reality.

The requirement specification documents were not fully completed at
the milestone passage MS 2, but was assumed to be finished at
approximately 155 days after the project started. The test phase started,
in reality before MS 3.5 was reached, at approximately 350 days from
the date the project started, which means that the phase stretched over
585-350=235 days.

The model can not consider over-lapping phases. This implies that the
time spent in the design and implementation phases that were not over-
lapped with other phases stretched over 585-155-235=195 days.

A System Dynamics Simulation Study of a Software Development Process

82

Figure B.1 Work distribution in time

The work distribution in time is presented in figure B .1. Three
categories are shown: Application Software (A-SW), Test Software
(T-SW) and Administration (ADM). The A-SW includes all the effort
spent on specification, design, implementation and fault correction.
The T-SW contains writing test specifications and performing tests.
The ADM is the object leader effort.

From figure B.1 an estimate of the amount of personnel in each phase
is made by counting the amount of effort spent in the phase and divide
it by the number of months. For the requirement phase the effort is
approximately 25 man-months divided on 155 working days, which is
equal to 3.2 persons working full-time in this phase. In the test phase
the effort is approximately 120 man-months spent on correction,
during 235 working days, which equals 10 persons. The effort spent on
testing is approximately 36 man-months divided on 235 working days,
which equals 3 persons.

Req phase Des & Impl
phases

Test phase

0

5

10

15

20

M
a
n
-M

o
n
th

s A-SW

T-SW

ADM

Appendix C

83

Appendix C Tables of Results

This appendix includes the results from the series of simulations in
case 2.

Table C.1 The test time when the number of testers is not a limiting
factor
NbrOfCorrectors 8 9 10 11 12 13 14 15 16 17 18
TestTime 250 235 224 214 206 201 196 191 188 186 184

Table C.2 The test time when the number of
correctors is not a limiting factor
NbrOfTesters 2.5 3 3.5 4 4.5 5 5.5 6
TestTime 280 236 211 194 180 170 162 155

