
A critique of cyclomatic
complexity as a software
metric
by Martin Shepperd

McCabe’s cyclomatic complexity metric is
widely cited a s a useful predictor of various
software attributes such a s reliability and
development effort. This critique
demonstrates that it is based upon poor
theoretical foundations and an inadequate
model of software development. The
argument that the metric provides the
developer with a useful engineering
approximation is not borne out by the
empirical evidence. Furthermore, it would
appear that for a large class of software it is
no more than a proxy for, and in many cases
is outperformed by, lines of code.

Fig. 1

90

Derivation of v(G) for an example program

1 Introduction

The need for some objective measurement
complexity has been long acknowledged

of software
Two early

contributions to this field are Halstead’s ‘software science’
(Ref. 1) and the cyclomatic complexity approach of McCabe
(Ref. 2). Both metrics are based upon the premise that
software complexity is strongly related to various measurable
properties of program code.

Although initially well received by the software engin-
eering community, software science based metrics have been
increasingly subject to criticism. Attacks have been made
upon the underlying pyschological model (Refs. 3 and 4). The
soundness of many empirical ‘validations’ has been
questioned (Ref. 5) and difficulties noted with counting rules
(Ref. 6). The ability of software science metrics to capture
program complexity in general would thus appear t o be in
great doubt.

It is thus rather surprising that the cyclomatic complexity
metric has not been subjected to a similar degree of scrutiny
to that given to software science. This is particularly the case
given the high degree of acceptance of the metric within the
software engineering community. It is widely cited (Refs.
7 - 13), subjected t o a ‘blizzard of refinements’ (Refs.
14 - 22), applied a s a design metric (Ref. 23) and described
in best-selling textbooks on software engineering (Refs. 24
and 25). Yet there have been comparatively few empirical
studies; indeed, a s a basic approach, the metric has been
allowed to pass relatively unquestioned.

The hypothesis of a simple deterministic relationship
between the number of decisions within a piece of software
and its complexity is potentially of profound importance to
the whole field of software engineering. This requires very
careful evaluation.

The rest of the paper reviews the theories put forward by
McCabe. Theoretical criticisms of the metric are outlined and
the various empirical validations for the metric are reviewed,
together with aspects of experimental design. It is concluded
that cyclomatic complexity is questionable on both
theoretical and empirical grounds. Therefore cyclomatic
complexity is of very limited utility.

2 The cyclomatic complexity metric

Given the increasing costs of software development, McCabe
considered that a ‘mathematical technique that will provide
a quantitative basis for modularisation and allow us to
identify software modules that will be difficult to test or
maintain’ was required. Use of a lines of code (LOC) metric
was rejected since McCabe could see no obvious relationship
between length and module complexity. Instead, he
suggested that the number of control paths through a module
would be a better indicator, particularly a s this appeared to
be strongly related to testing effort. Furthermore, much of

Software Engineering Journal March 1988

the work on 'structured programming' in the early 1970s
concentrated on program control flow structures (Refs. 26
and 27).

Unfortunately, the number of paths through any software
with a backward branch is potentially infinite. Fortunately,
the problem can be resolved by the application of graph
theory. The control flow of any procedural piece of software
can be depicted as a directed graph, by representing each
executable statement (or group of statements where the flow
of control i s sequential) as a node, and the flow of control
as the edges between them. The cyciomatic complexity of
a graph is useful because, providing the graph i s strongly
connected, it indicates the number of basic paths (i.e. linearly
independent circuits) contained within a graph, which, when
used in combination, can generate a l l possible paths through
the graph or program.

The cyclomatic complexity v of a program graph G is

v(G) = e - n + 1 (1)

where e is the number of edges, and n is the number of nodes.
A strongly connected graph is one for which given any two

nodes r and s there exist paths from r t o s and s to r. Fig.
1 shows an example derivation of cyclomatic complexity
from a simple program and i ts related control graph. Note
that the program graph is made strongly connected by the
addition of an edge connecting the END node to the BEGIN
node.

The process of adding an extra edge to the program graph
can be bypassed by adding one to the cyclomatic complexity
calculation. The calculation can be generalised for program
graphs that contain one or more components, subject to the
restriction that each component contains a single entry and
a single exit node. For a graph S with a set of connected
components the cyciomatic complexity is

v(S) = e - n t 2p (2)

where p i s the number of connected components.
A multi.component program graph is derived if the

software contains separate subroutines. This is illustrated in
Fig. 2.

As McCabe observed, the calculation reduces to a simple
count of conditions pius one. He argued that since a
compound condition, for example

I F X < 1 A N D Y < 2 T H E N

was a thinly disguised nested IF, then each condition should
contribute to module complexity, rather than merely
counting predicates (see Figs. 3a and b). Likewise a case
statement is viewed as a multiple IF statement (i.e. it
contributes n - I to v(G), where n is the number of cases).

McCabesaw a practical application of the metric in using
it to provide an upper limit to module complexity, beyond
which a module should be subdivided into simpler
components, A value of v(G) 5 10 was suggested, although
he accepted that in certain situations, notably large case
structures, the limit might be relaxed.

3 Theoretical considerations

The counting rules for different control statements have been
the subject o f some controversy. Myers(Ref. 19) has argued
that a complexity interval is a more effective measure of
complexity than a simple cyclomatic number. The interval
has a lower bound of decision statement count (i.e. predicate
count) pius one and an upper bound of individual condition
count plus one.

Myers used the following three examples to support his

Software Engineering Journal March 1988

Fig. 2 Derivation of v(S) for a program with a subroutine

modified form of the cyclomatic complexity metric:

v (G) = 2
Myers = (2:2)

IF X = O AND Y > I THEN ... v(G) = 3
ELSE ... : Myers = (2 :3)

IF X=O THEN
IF Y > 1 THEN ...

ELSE. . .;
ELSE ... v(G) = 3

Myers = (3:3)

His argument is that it is intuitively obvious that the th i rd
example i s more complex than the second, a distinction not
made by the cyciomatic number. The idea underlying his

31

YC2

THEN

next stmt
b

THEN

Fig. 3
separate decisions
a Treated as a single decision
b Treated as separate decisions

modification appears to be that there is more potential for
inserting additional ELSE clauses into a program with a
larger number of IF statements. They are not counted by the
McCabe metric, a s is demonstrated by the following two
program fragments, both of which have cyclomatic
complexities of 2:

Compound condition treated as a single decision and as

IF X < 1 THEN
...,

IF X < 1 THEN

ELSE
...

...(

v(G) = 2

v (G) = 2

Since Myers’ complexity interval does not directly count
ELSE statements it is arguable whether it represents much
of an improvement over that of McCabe’s metric. However,
the criticism of cyclomatic complexity remains, in that it fails
to distinguish between selections with and without ELSE
branches. From the standpoint of pyschological complexity
this is significant; however, since the number of basic paths
remains unaltered testing difficulty may not increase. Thus
the failure of cyclomatic complexity to count ELSE branches
is only a serious deficiency if the metric is intended to capture
complexity of comprehension.

The treatment of case statements has also been subject
to disagreement. Hansen (Ref. 15) has suggested that since
they were easier to understand than the equivalent nested
IFS they should only contribute one to the module
complexity. Other researchers (Ref. 28) have suggested a
log&) relationship, where n is the number of cases.
Evangelist (Ref. 29) also encountered anomalies in the
application of counting rules. Much of the difficulty stems
from the fact that McCabe was originally thinking in terms
of Fortran, whereas most of these difficulties arise from other

32

languages, some of them more recent, such as Ada.t Here
one has to contend with problems such a s distinguishing
between ‘IF y = 1 ORy = 3’ and ‘IF y = 0 OR ELSE x/y>l’. The
mapping from code to a program graph is ambiguous.

Another area of controversy is that v = 1 will remain true
for a linear sequence of any length. Since the metric is
insensitive to complexity contributed from linear sequences
of s ta tements , several researchers have suggested
modifications to the simple use of cyclomatic complexity.
Hansen has proposed a 2-tuple of cyclomatic complexity and
operand count (defined to be arithmetical operators, function
and subroutine calls, assignments, input and output
statements and array subscription). Unfortunately, as Baker
and Zweben (Ref. 30) point out, this approach does suffer
from the problem of ‘comparing apples and oranges’. It is
not clear how to rank in order of complexity the 2-tuples (iJ)
and (1,k) where i > l and k>j .

Stetter (Ref. 21) suggests an alternative approach to this
particular problem in the form of a cyclomatic flow
complexity metric. Flow of data is considered in addition to
flow of control. Complexity will generally increase with an
increase in length of a linear sequence of statements since
more data references will almost invariably be made.

A fur ther objection to the cyclomatic complexity metric
is its behaviour towards the structuring of software. A number
of researchers (Refs. 30 - 33) argue that the cyclomatic
complexity can increase when applying generally accepted
techniques to improve program structure. Certainly the
metric is insensitive to the use of unstructured techniques
such as jumping in and out of loops, since all that is captured
is the number of decisions plus one. Evangelist (Ref. 34)
reports that the application of only 2 out of 26 of Kernighan
and Plauger’s rules of good programming style (Ref. 35)
invariably results in a decrease in cyclomatic complexity.

A development of the unstructuredktructured argument
is the objection that t h e metric ignores the context or
environment of a decision. All decisions have a uniform
weight, regardless of depth of nesting or relationship with
other decisions. The complexity of a decision cannot be
considered in isolation, but must take into account other
decisions within its scope. This has resulted in variants of
cyclomatic complexity which allow for nesting depth (Refs.
18, 32 and 36).

It is worth noting that all counting rule variants to the
metric are based upon arguments along the lines that it is
intuit ively obvious that one example is more complex than
another and therefore an adjustment must be made to the
counting rules. Such arguments are based upon issues of
cognitive complexity or ‘perplexity’ (Ref. 37), which is only
one view of software complexity. Difficulty of testing is
another aspect of software complexity and one with which
McCabe was primarily concerned . These different
interpretations of cyclomatic complexity have significant
implications upon the validation and application of the
metric.

A more fundamental objection to cyclomatic complexity
is the inconsistent behaviour when measuring modularised
software. As Eqn. 2 indicates, v(G) is sensitive to the number
of subroutines within a program, because McCabe suggests
that these should be treated as unconnected components
within the control graph. This has the bizarre result of
increasing overall complexity as a program is divided into
more, presumably simpler, modules. In general, the
complexity v of a program P‘ will be:

v(P’) = v (P) + i (3)
where P is equivalent program to P’ but with a single

tAda is a trademark of the US Government Ada Joint Program
Office.

Software Engineering Journal March 1988

component, and i is the number of modules or subroutines
used by P' (i.e. the number of graph components - 1).

However, the relationship is further complicated by the
observation that graph complexity may be reduced in a
situation where modularisation eliminates code duplication.
Thus

v(P') = v (P) + i - ((v, - 1) * (U/ - 1)) (4)
j = 1

where v, is the complexity of the j th module or subroutine,
and U, is the number of times the j th module is called.

To summarise, general program complexity increases with
the addition of extra modules but decreases with the
factoring out of duplicate code. All other aspects of
modularity are disregarded. If one were to be prescriptive
on the basis of Eqn. 4, it would be to only modularise when
a fragment of non-linear code (i.e. containing decisions)
could be factored out. As a model with which to view general
software complexity, this appears unacceptable.

Three classes of theoretical objection have been presented.
First, there is the issue of the very simplistic approach to
decision counting. Ease of program comprehension is
unlikely to be completely orthogonal to software complexity.
The ease of comprehending a decision is not invariant, and
t h u s a constant weighting of one seems inappropriate.
Secondly, the metric appears to be independent of generally
accepted program structuring techniques. Since these are
intended to reduce complexity this does not exactly inspire
confidence. Thirdly, and most importantly, is the arbitrary
impact of modularisation upon total program complexity.
As a measure of inter-modular complexity, in other words
for all non-trivial software, cyclomatic complexity would
seem unsatisfactory on theoretical grounds.

4 Empirical validation of the metric

Many early validations of the metric were merely based upon
intuitive notions of complexity. For example, McCabe states
that 'the complexity measure v is designed to conform to

our intuitive notion of complexity' (Ref. 2). Hansen (Ref. 15)
argues that a good measure of program complexity should
satisfy several criteria, including that of relating 'intuitively
to the psychological complexity of programs'. H e does not
suggest that there is a need for any objective validation.
Likewise, Myers (Ref. 19) treats intuition a s sufficient
grounds for employing the metric.

This seems a rather curious approach: if intuition is a
reliable arbiter of complexity this eliminates the need for a
quantitative measure. On the other hand, if intuition cannot
be relied upon, it hardly provides a reasonable basis for
validation. Clearly a more objective approach to validaticn
is required.

The theoretical objections to the metric, that it ignores
other aspects of software such a s data and functional com-
plexity, are not necessarily fatal. It is easy to construct cer-
tain pathological examples, but this need not invalidate the
metric if it is possible to demonstrate that in practice it
provides a useful engineering predictor of factors that are
associated with complexity. Researchers have usually taken
these to include effort involved in testing and maintenance,
error incidence and ability to recall code.

A number of empirical studies have been carried out.
These are summarised in Table I. A difficulty that arises in
interpretation of many of these studies is that there is no ex-
plicit hypothesis being evaluated. Two possible a posteriori
hypotheses with which to examine the empirical work are a s
follows:

0 Hypothesis I: Total program cyclomatic complexity can
be used to predict various useful software characteristics
(for example development time, incidence of errors and
program comprehension).
0 Hypothesis 2: Programs comprising modules with low
v(G) (<lo) are easier to test and maintain than those for
which this is not the case (McCabe's original hypothesis).

As Table 1 indicates, the results of various empirical valida-
tion studies do not give a great deal of support to either
hypothesis. In general the results are not very compelling,
either at the program level (hypothesis 1) or for the studies

Pm0.47
P=0.41,0.81,0.79

Davis (Ref. 43) r is -ve, +ve
Feuer (Ref. 44) P=0.90"'*
Gaffney (Ref. 45) P=0.60
Henry (Ref. 46) P=0.84**' P=0.92'*"
Kitchenham (Ref. 47) F=0.86,0.88 r2= 0.46,0.49,0.21""'
Paige (Ref. 48) a= 0.90
Schneiderman (Ref. 49) r2=0.61"*" p=o.32*****
Shen(Ref 50) P=0.78***
Sheppard (Ref. 51) rz=0.79 P = 0.38 r= 0.35
Sunohara (Ref. 52) r* = 0.4.0.38 P=0.72,0.7
Wang (Ref. 53) P=0.62 P-0.59
Woodfield (Ref. 54) P=0.26, R= 0
Woodward (Ref. 22) r2=0.90

P = Pearson moment
* r was 'improved' ied for potentially 'aberrant' results
** correlated with Mead's token count)

R =

indirect error count (i.e. version count), or program change count
using log-log transformations

Software Engineering Journal March 1988 33

that deal with individual modules (hypothesis 2), such a s
Basili and Perricone (Ref. 38). The major exception is the
Henry et al. (Ref. 46) study of 165 procedures from the UNIXS
operating system, where the results show a strong correla-
tion between v(G) and module error rates. This result may be
slightly artificial since they appear to have filtered out all
error-free modules.

Based upon the observation that large modules tend to
contain more errors than sma!l modules, the Basili and
Perricone (Ref. 38) study uses error density (i.e. errors per
thousand LOC) a s a size-normalised metric of software
error-proneness. Their rather surprising finding was that
error density diminishes with increasing cyclomatic com-
plexity. Work by Shen et a/. (Ref. 50) gives support to this
result, although there is disagreement a s to whether error
density is an appropriate means of size normalisation since
module size and error density d o not appear to be indepen-
dent. Nevertheless, this strongly underlines the deficiency of
a simple intra-modular complexity metric.

The clearest result from the empirical studies is the strong
relationship between cyclomatic complexity and LOC. Even
in the study of Henry et al. there appears to be a fairly strong
association. Ironically it was the ‘inadequacy’ of LOC a s a
module complexity metric that led to McCabe proposing
cyclomatic complexity a s an alternative. A considerable
number of studies (Refs. 41, 47.48, 53 and 55) indicate that
LOC actually outperforms cyclomatic complexity.

The most reasonable inference that can be drawn from
the above studies is that there exists a significant class of
software for which v(G) is no more than a proxy for LOC.
A suggestion of Henry et al. (Ref. 46) that software can be
characterised as either decision or computation bound
could have a considerable bearing upon interpretation of
empirical studies. In cases of decision-bound software such
a s UNIX, v(G) will closely correspond to LOC. In computation-
bound software, with sizeable portions of linear code this
correspondence will be very marginal, and possibly accounts
substantially for the erratic results of Table 1.

An interesting development of this point has been made
by Humphreys(Ref. 56), who argues that there exists a trade-
off between decision or control flow complexity and data
structure complexity. One such example is the use of de-
cision tables to replace multiple IF or CASE statements (a
common technique in systems programming). The conse-
quence of this is that the cyclomatic complexity for the
decision table solution will be substantially lower than for
the alternative solution. Yet, he argues, the two pieces of
software appear to have similar complexities. More signifi-
cantly, they will require a similar amount of testing effort
since they have the same number of boundary conditions to
contend with. Thus the claimed association between testing
difficulty and v(G) in many cases is distinctly tenuous. The
suggestion has been made (Ref. 57) that this is due to
McCabe’s ambiguous mapping function of program control
flow to a program graph. Either way it does not bode well for
cyclomatic complexity a s a predictor o f testing effort.

Most of the studies reported above place reliance upon
obtaining high correlation coefficients. Use of Pearson’s
product moment, which is the most widely used correlation
coefficient in the studies above, requires the assumption
that the data is drawn from a population with a roughly
normal distribution. This creates a particular problem when
examining module error rates. The impossibility of a nega-
tive error count results in a pronounced skew in the error
distribution. This skew can be reduced by various trans-
formation techniques, for instance by using the square root
or logarithm. Studies such a s Refs. 40 and 46 would be

SUNIX is a trademark of AT & T Bell Laboratories.

34

more meaningful if one of these techniques were applied
to obtain a more normal distribution so we could place a
higher degree of confidence in the correlation coefficients
produced.

There are two alternative empirical approaches; both have
considerable difficulties associated with them. The first is
large-scale passive observation, where the researcher has
little if any influence. The second is more carefully con-
trolled experimentation, which out of practical necessity
tends to be very small scale; see for example Refs. 22, 41 ,42
and 53.

Large-scale passive observation is based upon the notion
that the variance introduced into the study from uncon-
trolled factors such a s differences in individual ability, task
difficulty and differing environments is compensated by the
large sample size involved. Problems include the difficulty
of obtaining accurate measurements (Ref. 39). Their results
showed some improvement when restricted to results vali-
dated by various cross-checks. More significant is the prob-
lem of variation in individual ability (Ref. 58). Brooks (Ref.
59) suggests that differences in ability for individuals from
similar backgrounds of up to 25 to 1 are such as to make it
very difficult to obtain statistically significant results.

The second approach, a s typified by Ref. 54, is more care-
fully controlled since the timescales and number of subjects
are relatively small. Here measurements are potentially
more accurate; however variance from external factors is still
a major difficulty. Use of within-subject experimental design
is a partial solution, although it does not address a number
of factors, such a s the subject’s familiarity with the problem
and the comparability of tasks. The small size of tasks being
undertaken is another problem area; frequently programs of
less than 300 LOC (Refs. 4 3 , 4 4 , 53 and 54) are used. These
programs are, by software engineering standards, trivial. In
such situations the onus is upon the researcher to demon-
strate that results a t a small scale are equally applicable for
large systems. Such a finding would be counter to current
directions in software engineering.

To summarise, many of the empirical validations of
McCabe’s metric need to be interpreted with caution. First
the use of correlation coefficients on skewed data causes
artificially high correlations. Secondly, the assumption of
causality would seem doubtful given the consistently high
association between cyclomatic complexity and LOC.
Thirdly, the high variation in programmer ability reduces the
statistical significance of correlation coefficients.

However, despite the above reservations, some trends in
the results are apparent. The strong association between
LOC and cyclomatic complexity gives the impression that
the latter may well be no more than a proxy for the former.
The ability of v(G) to predict error rates, development time
and program recall is quite erratic. Most damning is the out-
performing of v(G) by a straightforward LOC metric in over a
third of the studies considered.

5 Conclusions

A severe difficulty in evaluating McCabe’s metric and
associated empirical work is the lack of explicit model upon
which cyclomatic complexity is based. The implicit model
appears to be that the decomposition of a system into suit-
able components (or modules) is the key issue. The decom-
position should be based upon ease of testing individual
components. Testing difficulty is entirely determined by the
number of basic paths through a program’s flowgraph.

Unfortunately, and perhaps not surprisingly, different in-
vestigators have interpreted cyclomatic complexity in a
variety of ways. For example, some studies treat cyclomatic
complexity at a program level by summing individual
module complexities (Ref. 54), while others consider com-

Software Engineering Journal March 1988

plexity purely at a module level (Ref. 46). Naturally this state
of affairs does not facilitate the comparison of results.

An important distinction is made between intra- and inter-
modular complexity. Eqns. 3 and 4 suggest that cyclomatic
complexity is rather suspect in the latter area. Thus the only
possible role for cyclomatic complexity is a s an intra-modu-
lar complexity metric. Even this is made to look doubtful in
the light of the work of Basili and Perricone. In any case,
many researchers (Ref. 60) would argue that the problem of
how to modularise a program is better resolved by consider-
ations of ‘coupling’ and ‘cohesion’ (i.e. inter-modular com-
plexity), which are not adequately captured by the metric.

As noted earlier, most of the empirical work has relied
upon obtaining high correlation coefficients to substantiate
McCabe’s metric. However, a high correlation coefficient
between two variables does not necessarily imply causality,
a s illustrated by the well known, if slightly apochryphal,
example of the spatial distribution of ministers of religion
and prostitutes! Setting aside quibbles of experimental
methodology (Refs. 59 and 61), the fundamental problem
remains that without an explicit underlying model the
empirical ‘validation’ is meaningless and there is no hypoth-
esis to be refuted.

Even if we disregard all the above problems and accept the
correlation coefficients at face value, the results are dis-
tinctly erratic. Cyclomatic complexity fails to convince a s a
general software complexity metric. This impression is
strengthened by the close association between v(G) and LOC
and the fact that for a significant number of studies LOC
outperforms v(G).

The majority of modifications to McCabe’s original metric
remain untested. To what extent d o validations of cyclo-
matic complexity impinge upon these modified metrics,
many of which appear to be very minor variants? Prather
(Ref. 32), in an attempt to provide some unifying framework,
suggests a set of axioms which a ‘proper’ complexity metric
must satisfy:

Axiom I: The complexity of the whole must not be less
than the sum of the complexities of the parts.
0 Axiom 2: The complexity of a selection must be greater
than the sum of all the branches(i.e. the predicate must con-
tribute complex it y).

Axiom 3: The complexity of an iteration must be
greater than the iterated part (for the same reason a s axiom
2).

Although an interesting idea, a number of problems remain.
First, the axioms are limited to structured programs.
Secondly, the axioms provide very little constraint upon
the imaginations of software complexity metrics designers.
Thirdly, the axioms, however reasonable, are based purely
upon arguments of intuition. This is particularly the case for
Prather’s suggestion of an upper bound of twice the lower
bound for axioms 2 and 3. Finally, the underlying model is
incomplete, in a s much as there are no connections with ob-
servable events in the software development process.

This axiomatic approach has been further developed
(Refs. 3 0 , 6 2 and 63) such that any program may be reduced
into a hierarchy of irreducibles (prime trees). The benefits
are the removal of subjectivity over the issue of counting
rules and the ability to draw comparisons between different
metrics. Still unresolved are the problems of using intuition
when deriving actual complexity values from different irre-
ducibles and the construction of a complete model of the
relevant world for a complexity metric. The difficulty is, of
course, that the ‘real world’ is not entirely formal, in the
sense that we cannot model it with precise mathematical
relationships. The best we can hope for is engineering
approximations.

Software Engineering Journal March 1988

It is arguable that the search for a general complexity
metric based upon program properties is a futile task. Given
the vast range of programmers, programming environ-
ments, programming languages and programming tasks, to
unify them into the scope of a single complexity metric is an
awesome task. A more fruitful approach might be to derive
metrics from the more abstract notations and concepts-of
software designs. This would have the additional advantage
that design metrics are available earlier on in the software
development process.

For a software complexity metric to be treated seriously
by the software engineering community, considerably more
emphasis must be placed on the validation process. It may
well be ‘intellectually very appealing’ (Ref. 22) but this is
insufficient. Following from the suggestion (Ref. 55) that the
LOC metric be regarded a s a ‘baseline’ for the evaluation of
metrics, there must exist considerable doubts about the
utility of McCabe’s cyclomatic complexity metric.

6 Acknowledgments

The author would like to thank Prof. Darrel lnce of the Open
University, Milton Keynes, England, for the many useful
suggestions and kind help he has given during the prepar-
ation of this paper. He would also like to record his thanks
towards the referee who provided constructive criticism and
a number of additional insights.

7 References

1 HALSTEAD, M.H.: ‘Elements of software science’ (North-
Holland, 1977)

2 McCABE, T.J.: ‘A complexity measure’, I€€€ Transactions on
Software Engineering, 1976, 2, (4). pp. 308 - 320

3 COULTER, N.S.: ‘Software science and cognitive psychology’,
/€E€ Transactions on Software Engineering, 1983, 9, (2), pp.

4 SHEN, V.Y., CONTE, S.D., and DUNSMORE, H.E.: ‘Software
science revisited: a critical analysis of the theory and its em-
pirical support’, /€€E Transactions on Software Engineering,
1983, 9, (2), pp. 155 - 165

5 HAMER, PG., and FREWIN, G.D.: ‘M.H. Halstead’s software
science - a critical examination’. Proceedings of Sixth Inter-
national Conference on Software Engineering, Tokyo, Japan,
1982

6 LASSEZ, J.L., VAN DER KNIJFF, D., SHEPHERD, J., and
LASSEZ, C.: ‘A critical examination of software science’, Journal
of Systems & Software, 1981, 2, pp. 105 - 112

7 ARTHUR, L.J.: ‘Measuring programmer productivity and soft-
ware quality’ (Wiley-lnterscience, 1985)

8 COBB, G.W.: ‘A measurement of structure for unstructured
languages’. Proceedings of ACM SIGMETRICSISIGSOFT
Software Quality Assurance Workshop, 1978

9 DE MARCO, T.: ‘Controlling software projects: management,
measurement and estimation’ (Yourdon Press, 1982)

10 DUNSMORE, H.E.: ‘Software metrics: an overview of an evolving
methodology’, lnformation Processing & Management, 1984,

11 HARRISON, W., MAGEL, K., KLUCZNY, R., and DE KOCK, A.:
’Applying software complexity metrics to program mainten-
ance’, Computer, 1982, 15, Sept., pp. 65 - 79

12 SCHNEIDEWIND, N.F.: ‘Software metrics for aiding program
development and debugging’. National Computer Conference,
New York, NY, USA, Jun. 1979, AFIPS Conference Proceedings

13 TANIK, M.M.: ‘A comparison of program complexity prediction
models’, SlGSOFT Software Engineering Notes, 1980, 5, (4),

14 CURTIS, B.: ’Software metrics: guest editor’s introduction’, lEEE
Transactions on Software Engineering, 1983, 9, (6), pp. 637 -
638

15 HANSEN, W.J.: ‘Measurement of program complexity by the
pair (cyclomatic number, operator count)’, SlGPLAN Notices,

166 - 171

20, (1 - 2), pp. 183 - 192

Vol. 48, pp. 989 - 994

pp. 10 - 16

1978, 13, (3), pp. 29 - 33

35

16 HARRISON, W., and MAGEL, K.: ‘A complexity measure based
on nesting level’, SlGPLAN Notices, 1981, 16, (3), pp. 63 - 74

17 IYENGAR, S.S., PARAMESWARAN, N., and FULLER, J.: ‘A
measure of logical complexity of programs’, Computer
Languages, 1982, 7, pp. 147 - 160

18 MAGEL, K.: ‘Regular expressions in a program complexity
metric: SlGPLAN Notices, 1981, 16, (7). pp. 61 - 65

19 MYERS, G.J.: ‘An extension to the cyclomatic measure of
program complexity’, SIGPLAN Notices, 1977, 12, (lo), pp. 61

20 OVIEDO, E.: ‘Control flow, data flow and program complexity’
Proceedings of COMPSAC 80 Conference, Buffalo, NY, USA,

21 STETTER, F.: ‘A measure of program complexity’, Computer
Languages, 1984, 9, (3), pp. 203 - 210

22 WOODWARD, M.R., HENNELL, M.A., and HEDLEY, D.A.: ‘A
measure of control flow complexity in program text’, lEEE Trans-
actions on Software Engineering, 1979, 5, (1). pp. 45 - 50

23 HALL, N.R., and PREISER, S.: ’Combined network complexity
measures’, IBM Journal o f Research & Development, 1984, 28,
(I) , pp. 15 - 27

24 PRESSMAN, R.S.: ‘Software engineering. A practitioner’s
approach’ (McGraw-Hill, 1987), Second Edition

25 WIENER, R., and SINCOVEC, R.: ’Software engineering with
Modula-2 and Ada’ (Wiley, 1984)

26 DAHL, O.J., DIJKSTRA, E.W., and HOARE, C.A.R.: ‘Structured
programming’ (Academic Press, 1972)

27 DIJKSTRA, E.W.: ‘Goto statement considered harmful’, Com-
munications o f ACM, 1968, 18, (8), pp. 453 - 457

28 BASILI, V.R., and REITER, R.W.: ‘Evaluating automatable
measures of s/w development’. Proceedings of IEEE Workshop
on Quantitative Software Models, 1979, pp. 107 - 116

29 EVANGELIST, W.M.: ‘Relationships among computational, soft-
ware and intuitional complexity’, SIGPLAN Notices, 1983, 18,

30 BAKER, A.L., and ZWEBEN, S.: ’A comparison of measures of
control flow complexity’, /€€E Transactions on Software Engin-
eering, 1980, SE-6, (6), pp. 506 - 511

31 OULSNAM, G.: ‘Cyclomatic numbers do not measure complex-
ity of unstructured programs’, lnformation Processing Letters,

32 PRATHER, R.E.: ’An axiomatic theory of software complexity
metrics’, Computer Journal, 1984, 27, (4), pp. 340 - 347

33 SINHA, P.K., JAYAPRAKASH, S., and LAKSHMANAN, K.B.: ‘A
new look at the control flow complexity of computer programs:
in BARNES, D., and BROWN, P.: ‘Software engineering 86’.
Proceedings of BCS-IEE Software Engineering 86 Conference,
Southampton, England, Sept. 1986 (Peter Peregrinus, 1986),

34 EVANGELIST, W.M.: ‘Software complexity metric sensitivity to
program structuring rules’, Journal o f Systems & Software,

35 KERNIGHAN, B.W., and PLAUGER, P.: ‘The elements of pro-
gramming style’ (McGraw-Hill, 1978)

36 PIOWARSKI, P.: ‘A nesting level complexity measure’, SlGPLAN
Notices, 1982, 17, (9). pp. 40 - 50

37 WHITTY, R.W., and FENTON, N.E.: ‘The axiomatic approach to
systems complexity’, in ‘Designing for system maturity’.
Pergamon lnfotech State of the Art Report (Pergamon Press,
1985)

38 BASILI, V.R., and PERRICONE, B.T.: ‘Software errors and com-
plexity: an empirical investigation’, Communications of ACM,

39 BASILI, V.R., SELBY, R.W., and PHILLIPS, T.Y.: ‘Metric analysis
and data validation across Fortran projects: I€€€ Transactions
on Software Engineering, 1983, SE-9, (6), pp. 652 - 663

40 BOWEN, J.: ‘Are current approaches sufficient for measuring
software quality?’. Proceedings of Software Quality Assurance
Workshop, 1978, pp. 148 - 155

41 CURTIS, B. et al.: ‘Measuring the psychological complexity of
software maintenance tasks with the Halstead and McCabe
metrics; /€€E Transactions on Software Engineering, 1979,

42 CURTIS, B., SHEPPARD, S.B., and MILLIMAN, P.: ‘Third time
charm: stronger prediction of programmer performance by soft-
ware complexity metrics’. Proceedings of Fourth IEEE Inter-

- 64

Oct. 1980, pp. 146 - 152

(121, pp. 57 - 59

1979,8, pp. 207 - 211

pp. 88 - 102

1982,3, pp. 231 - 243

1983, 27, (I) , pp. 42 - 52

SE-5, (2), pp. 96 - 104

36

national Conference on Software Engineering, New York, NY,
USA, 1979

43 DAVIS, J.S.: ‘Chunks: a basis for complexity measurement’, lnfor-
mation Processing &Management, 1984,20, (1 - 2), pp. 119 -
127

44 FEUER, A.R., and FOWLKES, E.B.: ‘Some results from an em-
pirical study of computer software’. Proceedings of Fourth IEEE
International Conference on Software Engineering, Munich,
West Germany, pp. 351 - 355

45 GAFFNEY, J.E.: ‘Program control, complexity and productivity’.
Proceedings of IEEE Workshop on Quantitative Software
Models for Reliability, 1979, pp. 140 - 142

46 HENRY, S., KAFURA, D., and HARRIS, K.: ‘On the relationship
among three software metrics: ACM SlGMETRlCS Performance
Evaluation Review, Spring 1981, pp. 81 - 88

47 KITCHENHAM, B.A.: ‘Measures of programming complexity’,
ICL Technical Journal, 1981, 2, (3), pp. 298-316

48 PAIGE, M.: ‘A metric for software test planning’. Proceedings of
COMPSAC 80 Conference, Buffalo, NY, USA, Oct. 1980, pp. 499

49 SCHNEIDERMAN, N.F.: ‘An experiment in software error data
collection and analysis’, /E€€ Transactions on Software Engin-
eering, 1979, SE-5, (3), pp. 276 - 286

50 SHEN. V.Y., YU, T.-J., THEBAUT, S.M., and PAULSEN, L.R.:
‘Identifying error-prone software - an empirical study’, /€E€
Transactions on Software Engineering, 1985, SE-11, (4), pp. 317

51 SHEPPARD, S.B., CURTIS, B., MILLIMAN, P., BORST, M.A., and
LOVE, T.: ‘First-year results from a research program on human
factors in software engineering’. National Computer Conference,
New York, NY, USA, Jun. 1979, AFIPS Conference Proceedings

52 SUNOHARA, T., TAKANO, A., VEHARA, K., and OHKAWA, T.:
‘Program complexity measure for software development man-
agement’. Proceedings of Fifth IEEE International Conference
on Software Engineering, San Diego, CA, USA, March 1981, pp.

53 WANG, A.S., and DUNSMORE, H.E.: ‘Back-to-front programming
effort prediction’, Information Processing & Management, 1984,

54 WOODFIELD, S.N., SHEN, V.Y., and DCINSMORE, H.E.: ‘A study
of several metrics for programming effort’, Journal ofSystems &
Software, 1981, 2, pp. 97-103

55 BASILI, V.R., and HUTCHENS, D.H.: ‘An empirical study of a
syntactic complexity family’, lEEE Transactions on Software
Engineering, 1983, SE-9, (6), pp. 664-672

56 HUMPHREYS, R.A.: ’Control flow as a measure of program
complexity’. UK Alvey Programme Software Reliability and
Metrics Club Newsletter 4, 1986, pp. 3-7

57 WHITTY, R.: ‘Comments on “Control flow as a measure of program
complexity”’. UK Alvey Programme Software Reliability and
Metrics Club Newsletter 5, 1987, pp. 1-2

58 SCHNEIDER, G.M., SEDLMEYER, R.L.. and KEARNEY, J.: ‘On
the complexity of measuring software complexity’. National
Computer Conference, Chicago, IL, USA, May 1981, AFIPS Con-
ference Proceedings Vol. 50, pp. 317-322

59 BROOKS, R.E.: ‘Studying programmer behaviour experimentally:
the problems of proper methodology’, Communications o f

60 STEVENS, W.P., MYERS, G.J., and CONSTANTINE, L.L.: ‘Struc-
tured design’, lBM Systems Journal, 1974, 13, (2), pp. 115-129.

61 SAYWARD, F.G.: ’Experimental design methodologies in soft-
ware science: Information Processing & Management, 1984,20,

62 FENTON, N.E., and WHITTY, R.W.: ‘Axiomatic approach to soft-
ware metrification through program decomposition’, Computer
Journal, 1986, 29, (4), pp. 330-340

63 PRATHER, R.E.: ‘On hierarchical software metrics’, Software
Engineering Journal, 1987, 2, (2). pp. 62-65

- 504

- 323

Vol. 48, pp. 1021-1027

100-106

29, (1-2), pp. 139-149

ACM, 1980,23, (4), pp. 207-213

(1-2), pp. 223-227

M. Shepperd is with the School of Computing & Information Tech-
nology, Wolverhampton Polytechnic, Wolverhampton WVl ILY,
England, and is also with the Computing Discipline, Faculty of
Mathematics, The Open University, Walton Hall, Milton Keynes
MK7

Software Engineering Journal March 1988

