
A critique of cyclomatic 
complexity as a software 
metric 
by Martin Shepperd 

McCabe’s cyclomatic complexity metric is 
widely cited a s  a useful predictor of various 
software attributes such a s  reliability and 
development effort. This critique 
demonstrates that it is based upon poor 
theoretical foundations and an inadequate 
model of software development. The 
argument that the metric provides the 
developer with a useful engineering 
approximation is not borne out by the 
empirical evidence. Furthermore, it would 
appear that for a large class  of software it is 
no more than a proxy for, and in many cases  
is outperformed by, lines of code. 

Fig. 1 

90 

Derivation of v(G) for an example program 

1 Introduction 

The need for some objective measurement 
complexity has been long acknowledged 

of software 
Two early 

contributions to this field are Halstead’s ‘software science’ 
(Ref. 1) and the cyclomatic complexity approach of McCabe 
(Ref. 2). Both metrics are based upon the premise that 
software complexity is strongly related to various measurable 
properties of program code. 

Although initially well received by the software engin- 
eering community, software science based metrics have been 
increasingly subject to criticism. Attacks have been made 
upon the underlying pyschological model (Refs. 3 and 4). The 
soundness of many empirical ‘validations’ has been 
questioned (Ref. 5) and difficulties noted with counting rules 
(Ref. 6). The ability of software science metrics to capture 
program complexity in general would thus appear t o  be in 
great doubt. 

It is thus rather surprising that the cyclomatic complexity 
metric has not been subjected to a similar degree of scrutiny 
to that given to software science. This is particularly the case 
given the high degree of acceptance of the metric within the 
software engineering community. It is widely cited (Refs. 
7 - 13), subjected t o  a ‘blizzard of refinements’ (Refs. 
14 - 22), applied a s  a design metric (Ref. 23) and described 
in best-selling textbooks on software engineering (Refs. 24  
and 25). Yet there have been comparatively few empirical 
studies; indeed, a s  a basic approach, the metric has been 
allowed to pass relatively unquestioned. 

The hypothesis of a simple deterministic relationship 
between the number of decisions within a piece of software 
and its complexity is potentially of profound importance to 
the whole field of software engineering. This requires very 
careful evaluation. 

The rest of the paper reviews the theories put forward by 
McCabe. Theoretical criticisms of the metric are outlined and 
the various empirical validations for the metric are reviewed, 
together with aspects of experimental design. It is concluded 
that cyclomatic complexity is questionable on both 
theoretical and empirical grounds. Therefore cyclomatic 
complexity is of very limited utility. 

2 The cyclomatic complexity metric 

Given the increasing costs of software development, McCabe 
considered that a ‘mathematical technique that will provide 
a quantitative basis for modularisation and allow us to 
identify software modules that will be difficult to test or 
maintain’ was required. Use of a lines of code (LOC) metric 
was rejected since McCabe could see no obvious relationship 
between length and module complexity. Instead, he 
suggested that the number of control paths through a module 
would be a better indicator, particularly a s  this appeared to 
be strongly related to testing effort. Furthermore, much of 
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the work on 'structured programming' in the early 1970s 
concentrated on program control flow structures (Refs. 26 
and 27). 

Unfortunately, the number of paths through any software 
with a backward branch is potentially infinite. Fortunately, 
the problem can be resolved by the application of graph 
theory. The control flow of any procedural piece of software 
can be depicted as a directed graph, by representing each 
executable statement (or group of  statements where the flow 
of  control i s  sequential) as a node, and the flow of control 
as the edges between them. The cyciomatic complexity of 
a graph is useful because, providing the graph i s  strongly 
connected, it indicates the number of basic paths (i.e. linearly 
independent circuits) contained within a graph, which, when 
used in combination, can generate a l l  possible paths through 
the graph or program. 

The cyclomatic complexity v of a program graph G is 

v(G) = e - n + 1 (1) 

where e is the number of edges, and n is the number of nodes. 
A strongly connected graph is one for which given any two 

nodes r and s there exist paths from r t o  s and s to r. Fig. 
1 shows an example derivation of  cyclomatic complexity 
from a simple program and i ts  related control graph. Note 
that the program graph is made strongly connected by the 
addition of an edge connecting the END node to the BEGIN 
node. 

The process of adding an extra edge to the program graph 
can be bypassed by adding one to  the cyclomatic complexity 
calculation. The calculation can be generalised for program 
graphs that contain one or more components, subject to the 
restriction that each component contains a single entry and 
a single exit node. For a graph S with a set of connected 
components the cyciomatic complexity is 

v(S) = e - n t 2p (2) 

where p i s  the number of connected components. 
A multi.component program graph is derived if the 

software contains separate subroutines. This is illustrated in 
Fig. 2. 

As McCabe observed, the calculation reduces to a simple 
count of conditions pius one. He argued that since a 
compound condition, for example 

I F X  < 1 A N D Y  < 2 T H E N  

was a thinly disguised nested IF, then each condition should 
contribute to module complexity, rather than merely 
counting predicates (see Figs. 3a and b). Likewise a case 
statement is viewed as a multiple IF statement (i.e. it 
contributes n - I to v(G), where n is the number of cases). 

McCabesaw a practical application of the metric in using 
it to provide an upper limit to module complexity, beyond 
which a module should be subdivided into simpler 
components, A value of v(G) 5 10 was suggested, although 
he accepted that in certain situations, notably large case 
structures, the limit might be relaxed. 

3 Theoretical considerations 

The counting rules for different control statements have been 
the subject o f  some controversy. Myers(Ref. 19) has argued 
that a complexity interval is a more effective measure of 
complexity than a simple cyclomatic number. The interval 
has a lower bound of decision statement count (i.e. predicate 
count) pius one and an upper bound of individual condition 
count plus one. 

Myers used the following three examples to  support his 
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Fig. 2 Derivation of v(S) for a program with a subroutine 

modified form of the cyclomatic complexity metric: 

v ( G )  = 2 
Myers = (2:2) 

IF X = O  AND Y > I  THEN ... v(G) = 3 
ELSE ... : Myers = (2 :3)  

IF X=O THEN 
IF Y >  1 THEN ... 

ELSE.  . .; 
ELSE ... v(G) = 3 

Myers = (3:3) 

His argument is that it is intuitively obvious that the th i rd 
example i s  more complex than the second, a distinction not 
made by the cyciomatic number. The idea underlying his 

31 



YC2 

THEN 

next stmt 
b 

THEN 

Fig. 3 
separate decisions 
a Treated as a single decision 
b Treated as separate decisions 

modification appears to be that there is more potential for 
inserting additional ELSE clauses into a program with a 
larger number of IF statements. They are not counted by the 
McCabe metric, a s  is demonstrated by the following two 
program fragments, both of which have cyclomatic 
complexities of 2: 

Compound condition treated as a single decision and as 

IF X < 1  THEN 
..., 

IF X <  1 THEN 

ELSE 
... 

...( 

v(G)  = 2 

v ( G )  = 2 

Since Myers’ complexity interval does not directly count 
ELSE statements it is arguable whether it represents much 
of an improvement over that of McCabe’s metric. However, 
the criticism of cyclomatic complexity remains, in that it fails 
to distinguish between selections with and without ELSE 
branches. From the standpoint of pyschological complexity 
this is significant; however, since the number of basic paths 
remains unaltered testing difficulty may not increase. Thus 
the failure of cyclomatic complexity to count ELSE branches 
is only a serious deficiency if the metric is intended to capture 
complexity of comprehension. 

The treatment of case statements has also been subject 
to disagreement. Hansen (Ref. 15) has suggested that since 
they  were easier to understand than the equivalent nested 
IFS they should only contribute one  to  the module 
complexity. Other researchers (Ref. 28) have suggested a 
log&) relationship, where n is the number of cases. 
Evangelist (Ref. 29) also encountered anomalies in the 
application of counting rules. Much of the  difficulty stems 
from the fact that McCabe was originally thinking in terms 
of Fortran, whereas most of these difficulties arise from other 
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languages, some of them more recent, such as  Ada.t Here 
one  has to contend with problems such a s  distinguishing 
between ‘IF y = 1 ORy = 3’ and ‘IF y = 0 OR ELSE x/y>l’. The 
mapping from code to a program graph is ambiguous. 

Another area of controversy is that v = 1 will remain true 
for a linear sequence of any length. Since the metric is 
insensitive to complexity contributed from linear sequences 
of s ta tements ,  several researchers have suggested 
modifications to the simple use of cyclomatic complexity. 
Hansen has proposed a 2-tuple of cyclomatic complexity and 
operand count (defined to be arithmetical operators, function 
and subroutine calls, assignments, input and output 
statements and array subscription). Unfortunately, as  Baker 
and Zweben (Ref. 30) point out, this approach does suffer 
from the problem of ‘comparing apples and oranges’. It is 
not clear how to rank in order of complexity the 2-tuples ( iJ) 
and (1,k) where i > l  and k>j .  

Stetter (Ref. 21) suggests an alternative approach to this 
particular problem in the form of a cyclomatic flow 
complexity metric. Flow of data is considered in addition to 
flow of control. Complexity will generally increase with an 
increase in length of a linear sequence of statements since 
more data references will almost invariably be made. 

A fur ther  objection to the cyclomatic complexity metric 
is its behaviour towards the  structuring of software. A number 
of researchers (Refs. 30 - 33) argue that the cyclomatic 
complexity can increase when applying generally accepted 
techniques to improve program structure. Certainly the 
metric is insensitive to the use of unstructured techniques 
such as  jumping in and out of loops, since all that is captured 
is the number of decisions plus one. Evangelist (Ref. 34) 
reports that the application of only 2 out of 26  of Kernighan 
and Plauger’s rules of good programming style (Ref. 35) 
invariably results in a decrease in cyclomatic complexity. 

A development of the unstructuredktructured argument 
is the objection that t h e  metric ignores the context or 
environment of a decision. All decisions have a uniform 
weight, regardless of depth of nesting or relationship with 
other decisions. The complexity of a decision cannot be 
considered in isolation, but must take into account other 
decisions within its scope. This has resulted in variants of 
cyclomatic complexity which allow for nesting depth (Refs. 
18, 32  and 36). 

It is worth noting that all counting rule variants to the 
metric are based upon arguments along the lines that it is 
intuit ively obvious that one example is more complex than 
another and therefore an adjustment must be made to the 
counting rules. Such arguments are based upon issues of 
cognitive complexity or ‘perplexity’ (Ref. 37), which is only 
one view of software complexity. Difficulty of testing is 
another aspect of software complexity and one with which 
McCabe was primarily concerned .  These  different 
interpretations of cyclomatic complexity have significant 
implications upon the validation and application of the 
metric. 

A more fundamental objection to cyclomatic complexity 
is the inconsistent behaviour when measuring modularised 
software. As Eqn. 2 indicates, v(G) is sensitive to the number 
of subroutines within a program, because McCabe suggests 
that these should be treated as  unconnected components 
within the  control graph. This has the bizarre result of 
increasing overall complexity as  a program is divided into 
more, presumably simpler, modules. In general, the 
complexity v of a program P‘ will be: 

v(P’ )  = v ( P )  + i (3) 
where P is equivalent program to P’ but with a single 

tAda is a trademark of the US Government Ada Joint Program 
Office. 
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component, and i is the number of modules or subroutines 
used by P' (i.e. the number of graph components - 1). 

However, the relationship is further complicated by the 
observation that graph complexity may be reduced in a 
situation where modularisation eliminates code duplication. 
Thus 

v(P') = v ( P )  + i -  ((v, - 1) * (U/ - 1)) (4) 
j = 1  

where v, is the complexity of the j th  module or subroutine, 
and U, is the  number of times the j th  module is called. 

To summarise, general program complexity increases with 
the addition of extra modules but decreases with the 
factoring out of duplicate code. All other aspects of 
modularity are disregarded. If one  were to be prescriptive 
on the basis of Eqn. 4, it would be to only modularise when  
a fragment of non-linear code (i.e. containing decisions) 
could be factored out. As a model with which to view general 
software complexity, this appears unacceptable. 

Three classes of theoretical objection have been presented. 
First, there is the  issue of the very simplistic approach to 
decision counting. Ease of program comprehension is 
unlikely to be completely orthogonal to software complexity. 
The ease of comprehending a decision is not invariant, and 
t h u s  a constant weighting of one  seems inappropriate. 
Secondly, the metric appears to be independent of generally 
accepted program structuring techniques. Since these are 
intended to reduce complexity this does not exactly inspire 
confidence. Thirdly, and most importantly, is the arbitrary 
impact of modularisation upon total program complexity. 
As  a measure of inter-modular complexity, in other words 
for all non-trivial software, cyclomatic complexity would 
seem unsatisfactory on theoretical grounds. 

4 Empirical validation of the metric 

Many early validations of the metric were merely based upon 
intuitive notions of complexity. For example, McCabe states 
that 'the complexity measure v is designed to conform to 

our intuitive notion of complexity' (Ref. 2). Hansen (Ref. 15) 
argues that a good measure of program complexity should 
satisfy several criteria, including that of relating 'intuitively 
to the psychological complexity of programs'. H e  does not 
suggest that there is a need for any objective validation. 
Likewise, Myers (Ref. 19) treats intuition a s  sufficient 
grounds for employing the metric. 

This seems a rather curious approach: if intuition is a 
reliable arbiter of complexity this eliminates the need for a 
quantitative measure. On the other hand, if  intuition cannot 
be relied upon, it hardly provides a reasonable basis for 
validation. Clearly a more objective approach to validaticn 
is required. 

The theoretical objections to the metric, that it ignores 
other aspects of software such  a s  data and functional com- 
plexity, are not necessarily fatal. It is easy to construct cer- 
tain pathological examples, but this need not invalidate the 
metric if it is possible to demonstrate that in practice it 
provides a useful engineering predictor of factors that are 
associated with complexity. Researchers have usually taken 
these to include effort involved in testing and maintenance, 
error incidence and ability to recall code. 

A number of empirical studies have been carried out. 
These are summarised in Table I. A difficulty that arises in 
interpretation of many of these studies is that there is no ex- 
plicit hypothesis being evaluated. Two possible a posteriori 
hypotheses with which to examine the empirical work are a s  
follows: 

0 Hypothesis I: Total program cyclomatic complexity can 
be used to predict various useful software characteristics 
(for example development time, incidence of errors and 
program comprehension). 
0 Hypothesis 2: Programs comprising modules with low 
v(G) (<lo) are easier to test and maintain than those for 
which this is not the  case (McCabe's original hypothesis). 

As  Table 1 indicates, the results of various empirical valida- 
tion studies do  not give a great deal of support to either 
hypothesis. In general the results are not very compelling, 
either at the program level (hypothesis 1 )  or for the studies 

Pm0.47 
P=0.41,0.81,0.79 

Davis (Ref. 43) r is -ve, +ve 
Feuer (Ref. 44) P=0.90"'* 
Gaffney (Ref. 45) P=0.60 
Henry (Ref. 46) P=0.84**' P=0.92'*" 
Kitchenham (Ref. 47) F=0.86,0.88 r2= 0.46,0.49,0.21""' 
Paige (Ref. 48) a= 0.90 
Schneiderman (Ref. 49) r2=0.61"*" p=o.32***** 
Shen(Ref 50) P=0.78*** 
Sheppard (Ref. 51) rz=0.79 P = 0.38 r= 0.35 
Sunohara (Ref. 52) r* = 0.4.0.38 P=0.72,0.7 
Wang (Ref. 53) P=0.62 P-0.59 
Woodfield (Ref. 54) P=0.26, R= 0 
Woodward (Ref. 22) r2=0.90 

P = Pearson moment 
* r was 'improved' ied for potentially 'aberrant' results 
** correlated with Mead's token count) 

R = 

indirect error count (i.e. version count), or program change count 
using log-log transformations 

**** 
***** 
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that deal with individual modules (hypothesis 2), such a s  
Basili and Perricone (Ref. 38). The major exception is the 
Henry et al. (Ref. 46) study of 165 procedures from the UNIXS 
operating system, where the results show a strong correla- 
tion between v(G) and module error  rates. This result may be 
slightly artificial since they appear to have filtered out all 
error-free modules. 

Based upon the observation that large modules tend to 
contain more errors than sma!l modules, the Basili and 
Perricone (Ref. 38) study uses error density (i.e. errors per 
thousand LOC) a s  a size-normalised metric of software 
error-proneness. Their rather surprising finding was that 
error density diminishes with increasing cyclomatic com- 
plexity. Work by Shen et a/. (Ref. 50) gives support to this 
result, although there is disagreement a s  to whether error 
density is an  appropriate means of size normalisation since 
module size and error density d o  not appear to be indepen- 
dent. Nevertheless, this strongly underlines the deficiency of 
a simple intra-modular complexity metric. 

The clearest result from the empirical studies is the strong 
relationship between cyclomatic complexity and LOC. Even 
in the study of Henry et al. there appears to be a fairly strong 
association. Ironically it was the ‘inadequacy’ of LOC a s  a 
module complexity metric that led to McCabe proposing 
cyclomatic complexity a s  an  alternative. A considerable 
number of studies (Refs. 41, 47.48, 53 and 55) indicate that 
LOC actually outperforms cyclomatic complexity. 

The most reasonable inference that can be drawn from 
the above studies is that there exists a significant class of 
software for which v(G) is no more than a proxy for LOC. 
A suggestion of Henry et al. (Ref. 46) that software can be 
characterised as  either decision or computation bound 
could have a considerable bearing upon interpretation of 
empirical studies. In cases of decision-bound software such 
a s  UNIX, v(G) will closely correspond to LOC. In computation- 
bound software, with sizeable portions of linear code this 
correspondence will be very marginal, and possibly accounts 
substantially for the erratic results of Table 1. 

An interesting development of this point has been made 
by Humphreys(Ref. 56), who argues that there exists a trade- 
off between decision or control flow complexity and data 
structure complexity. One  such example is the use of de- 
cision tables to replace multiple IF or CASE statements (a 
common technique in systems programming). The conse- 
quence of this is that the cyclomatic complexity for the  
decision table solution will be substantially lower than for 
the alternative solution. Yet, he argues, the two pieces of 
software appear to have similar complexities. More signifi- 
cantly, they will require a similar amount of testing effort 
since they have the same number of boundary conditions to 
contend with. Thus the claimed association between testing 
difficulty and v(G) in many cases is distinctly tenuous. The 
suggestion has been made (Ref. 57) that this is due to 
McCabe’s ambiguous mapping function of program control 
flow to a program graph. Either way it does not bode well for 
cyclomatic complexity a s  a predictor o f  testing effort. 

Most of the studies reported above place reliance upon 
obtaining high correlation coefficients. Use of Pearson’s 
product moment, which is the most widely used correlation 
coefficient in the studies above, requires the assumption 
that the data is drawn from a population with a roughly 
normal distribution. This creates a particular problem when 
examining module error rates. The impossibility of a nega- 
tive error count results in a pronounced skew in the error 
distribution. This skew can be reduced by various trans- 
formation techniques, for instance by using the square root 
or logarithm. Studies such a s  Refs. 40 and 46 would be 

SUNIX is a trademark of AT & T Bell Laboratories. 
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more meaningful if one  of these techniques were applied 
to obtain a more normal distribution so we could place a 
higher degree of confidence in the  correlation coefficients 
produced. 

There are two alternative empirical approaches; both have 
considerable difficulties associated with them. The first is 
large-scale passive observation, where the researcher has 
little if any influence. The second is more carefully con- 
trolled experimentation, which out of practical necessity 
tends to be very small scale; see for example Refs. 22, 41 ,42  
and 53. 

Large-scale passive observation is based upon the notion 
that the variance introduced into the study from uncon- 
trolled factors such a s  differences in individual ability, task 
difficulty and differing environments is compensated by the 
large sample size involved. Problems include the difficulty 
of obtaining accurate measurements (Ref. 39). Their results 
showed some improvement when restricted to results vali- 
dated by various cross-checks. More significant is the prob- 
lem of variation in individual ability (Ref. 58). Brooks (Ref. 
59) suggests that differences in ability for individuals from 
similar backgrounds of up to 25 to 1 are such as  to make it 
very difficult to obtain statistically significant results. 

The second approach, a s  typified by Ref. 54, is more care- 
fully controlled since the timescales and number of subjects 
are relatively small. Here measurements are potentially 
more accurate; however variance from external factors is still 
a major difficulty. Use of within-subject experimental design 
is a partial solution, although it does not address a number 
of factors, such a s  the subject’s familiarity with the problem 
and the comparability of tasks. The small size of tasks being 
undertaken is another problem area; frequently programs of 
less than 300 LOC (Refs. 4 3 , 4 4 ,  53 and 54) are used. These 
programs are, by software engineering standards, trivial. In 
such situations the onus is upon the researcher to demon- 
strate that results a t  a small scale are equally applicable for 
large systems. Such a finding would be counter to current 
directions in software engineering. 

To summarise, many of the empirical validations of 
McCabe’s metric need to be interpreted with caution. First 
the use of correlation coefficients on skewed data causes 
artificially high correlations. Secondly, the assumption of 
causality would seem doubtful given the consistently high 
association between cyclomatic complexity and LOC. 
Thirdly, the high variation in programmer ability reduces the 
statistical significance of correlation coefficients. 

However, despite the above reservations, some trends in 
the results are apparent. The strong association between 
LOC and cyclomatic complexity gives the impression that 
the latter may well be no more than a proxy for the former. 
The ability of v(G) to predict error rates, development time 
and program recall is quite erratic. Most damning is the out- 
performing of v(G) by a straightforward LOC metric in over a 
third of the studies considered. 

5 Conclusions 

A severe difficulty in evaluating McCabe’s metric and 
associated empirical work is the lack of explicit model upon 
which cyclomatic complexity is based. The implicit model 
appears to be that the decomposition of a system into suit- 
able components (or modules) is the key issue. The decom- 
position should be based upon ease of testing individual 
components. Testing difficulty is entirely determined by the 
number of basic paths through a program’s flowgraph. 

Unfortunately, and perhaps not surprisingly, different in- 
vestigators have interpreted cyclomatic complexity in a 
variety of ways. For example, some studies treat cyclomatic 
complexity at a program level by summing individual 
module complexities (Ref. 54), while others consider com- 
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plexity purely at a module level (Ref. 46). Naturally this state 
of affairs does not facilitate the comparison of results. 

An important distinction is made between intra- and inter- 
modular complexity. Eqns. 3 and 4 suggest that cyclomatic 
complexity is rather suspect in the latter area. Thus the only 
possible role for cyclomatic complexity is a s  an  intra-modu- 
lar complexity metric. Even this is made to look doubtful in 
the light of the work of Basili and Perricone. In any case, 
many researchers (Ref. 60) would argue that the problem of 
how to modularise a program is better resolved by consider- 
ations of ‘coupling’ and ‘cohesion’ (i.e. inter-modular com- 
plexity), which are not adequately captured by the metric. 

As noted earlier, most of the empirical work has relied 
upon obtaining high correlation coefficients to substantiate 
McCabe’s metric. However, a high correlation coefficient 
between two variables does not necessarily imply causality, 
a s  illustrated by the well known, if slightly apochryphal, 
example of the spatial distribution of ministers of religion 
and prostitutes! Setting aside quibbles of experimental 
methodology (Refs. 59 and 61), the fundamental problem 
remains that without an  explicit underlying model the 
empirical ‘validation’ is meaningless and there is no hypoth- 
esis to be refuted. 

Even if we disregard all the above problems and accept the 
correlation coefficients at face value, the results are dis- 
tinctly erratic. Cyclomatic complexity fails to convince a s  a 
general software complexity metric. This impression is 
strengthened by the close association between v(G) and LOC 
and the fact that for a significant number of studies LOC 
outperforms v(G). 

The majority of modifications to McCabe’s original metric 
remain untested. To what extent d o  validations of cyclo- 
matic complexity impinge upon these modified metrics, 
many of which appear to be very minor variants? Prather 
(Ref. 32), in an attempt to provide some unifying framework, 
suggests a set of axioms which a ‘proper’ complexity metric 
must satisfy: 

Axiom I: The complexity of the whole must not be less 
than the sum of the complexities of the parts. 
0 Axiom 2: The complexity of a selection must be greater 
than the sum of all the branches(i.e. the predicate must con- 
tribute complex it y). 

Axiom 3: The complexity of an  iteration must be 
greater than the iterated part (for the same reason a s  axiom 
2). 

Although an  interesting idea, a number of problems remain. 
First, the axioms are limited to structured programs. 
Secondly, the axioms provide very little constraint upon 
the imaginations of software complexity metrics designers. 
Thirdly, the axioms, however reasonable, are based purely 
upon arguments of intuition. This is particularly the case for 
Prather’s suggestion of an  upper bound of twice the lower 
bound for axioms 2 and 3. Finally, the underlying model is 
incomplete, in a s  much as  there are no connections with ob- 
servable events in the software development process. 

This axiomatic approach has been further developed 
(Refs. 3 0 , 6 2  and 63) such that any program may be reduced 
into a hierarchy of irreducibles (prime trees). The benefits 
are the removal of subjectivity over the issue of counting 
rules and the ability to draw comparisons between different 
metrics. Still unresolved are the problems of using intuition 
when deriving actual complexity values from different irre- 
ducibles and the construction of a complete model of the 
relevant world for a complexity metric. The difficulty is, of 
course, that the ‘real world’ is not entirely formal, in the 
sense that we cannot model it with precise mathematical 
relationships. The best we can hope for is engineering 
approximations. 
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It is arguable that the search for a general complexity 
metric based upon program properties is a futile task. Given 
the vast range of programmers, programming environ- 
ments, programming languages and programming tasks, to 
unify them into the scope of a single complexity metric is an  
awesome task. A more fruitful approach might be to derive 
metrics from the more abstract notations and concepts-of 
software designs. This would have the additional advantage 
that design metrics are available earlier on in the software 
development process. 

For a software complexity metric to be treated seriously 
by the software engineering community, considerably more 
emphasis must be placed on the validation process. It may 
well be ‘intellectually very appealing’ (Ref. 22) but this is 
insufficient. Following from the suggestion (Ref. 55) that the 
LOC metric be regarded a s  a ‘baseline’ for the evaluation of 
metrics, there must exist considerable doubts about the 
utility of McCabe’s cyclomatic complexity metric. 
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