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Abstract

The Grid-Based Path Planning Competition has just
completed its third iteration. The entries used in the
competition have improved significantly during this
time, changing the view of the state of the art of grid-
based pathfinding. Furthermore, the entries from the
competition have been made publicly available, improv-
ing the ability of researchers to compare their work.
This paper summarizes the entries to the 2014 compe-
tition, presents the 2014 competition results, and talks
about what has been learned and where there is room
for improvement.

Introduction and Background
Grid-based path planning is a broadly studied topic, with a
large variety of published approaches across many applica-
tion domains. For many years work in this domain lacked
broadly distributed standard benchmark problems for com-
paring work and standard implementations for comparing
the quality of work. The first author of this paper worked to
fix both of these situations by (1) introducing a variety of
standard benchmark problems that can be used to test pro-
grams that run on grid-based maps and (2) by starting the
grid-based path planning competition (GPPC).

Citation counts suggest that the pathfinding benchmarks
have been broadly adopted. (See (Sturtevant 2012) for the
origin of each of the maps in the benchmark set.) The GPPC
competition has run three times, in 2012, 2013, and 2014.
Over this time period there has been a significant increase
in the performance of entries to the competition, and the
understanding of the structure of grid-based maps has also
improved.

This paper describes in detail the methodology used for
the competition and the results from the 2014 competition.
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Following this, the authors of each of the 2014 entries de-
scribe their entries. The paper concludes with a discussion
of future directions for the competition and for grid-based
pathfinding research.

Competition Setup
The competition is set up to experiment on a broad range of
problem instances and a broad range of map sizes.

The GPPC runs on a set of 132 maps taken from several
map sources. The source of each map set, and the number of
maps in each set are shown in Table 1. Sample maps from
the competition are shown in Figure 1.

Table 1: Map distribution in the GPPC.

Source # Maps # Problems
Starcraft 11 29,970

Dragon Age 2 57 54,360
Dragon Age: Origins 27 44,414

Mazes 18 145,976
Random 18 32,228
Rooms 18 27,130
Total 132 347,868

Prior to the 2012 competition the maps from Dragon Age
2 were not publicly available. These have been used in the
GPPC competition but have not been released as part of the
general online pathfinding map repository, although there
are plans to do so in the future. The maps from Starcraft
and Dragon Age: Origins are part of the pathfinding repos-
itory and use the standard problems created for these maps,
although these are only a subset of the total available maps.
The random, room, and maze maps are artificial. These vary
in size from 100 × 100 to 1550 × 1550. The random maps
have exactly 33% of the cells blocked, and then everything
except the largest connected component in the map is re-
moved, removing approximately another 5% of the cells in



each map. The room maps contain rooms that are 10% of
the size of the map. Originally all rooms are closed, but
doors are opened between rooms randomly. When a wall is
opened, 1/8 of the cells in the wall are randomly unblocked.
Figure 1 shows (a) 10 × 10 rooms in a 100 × 100 map and
(b) 40× 40 rooms in a 400× 400 map. The maze maps are
mazes with a corridor size which is 1% of the size of one
dimension of the map. So, the 100× 100 map has corridors
of size 1, and 800 × 800 map has corridors size 8. Figure 1
shows (c) a portion of a 100× 100 maze and (d) a portion of
a 400× 400 maze.

Problems for testing are selected randomly. Problems are
divided into buckets according to the length of the optimal
solution divided by 4. So, all problems with optimal length
[4, 8) are in the same bucket. 10 problems are selected for
each bucket, and the number of buckets per map is deter-
mined by the length of the paths in a particular map. There
are more problems on the maze maps because the paths in
mazes are so long. Some Dragon Age 2 maps are relatively
small, so even though there are a large number of maps, the
number of problems per map is smaller than other maps.

The distribution of map sizes per map source is shown in
Figure 2. The map sizes range over 4 orders of magnitude
from the largest to the smallest. The smaller maps are from
the Dragon Age games, while the larger maps are from Star-
craft and the artificial maps.
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Figure 2: A histogram of the map sizes used in the competi-
tion.

Experimental Setup
To ensure that the competition results are not overly influ-
ence by CPU timing variations, we run the problem set 5
times on each entry. Entries must implement a simple in-
terface for pre-computing data for a map, loading the pre-
computed data, and doing a path computation on a map. Pre-
computation is performed for all entries before they are run.
The repeated runs are not consecutive, so the data from one
run will not be in cache on a subsequent run. Entries can
choose to return the entire path in one step, or can do so
incrementally, creating a real-time agent that can interleave
planning and movement.

In all years of the competition the experiments have
been run on the same machine, a server with a 2-processor
quad-core Xeon E5620 running at 2.4Ghz with 12 GB of

RAM. The solving process uses a sequential API, but pre-
processing can be done in parallel.

Depending on the domain, there are a large number of in-
teresting metrics that determine the best entry. We do not
set a particular utility function to determine the best en-
try, but instead look for the Pareto optimal frontier of non-
dominated entries. This allows a practitioner to analyze the
data for themselves, choosing the method that is best suited
for their own application.

The metrics measured include:

• Total Time (seconds): This is the total time to find the
solution to all problems.

• Average Time (ms): This is the average time in millisec-
onds to find a single path.

• 20 Steps (ms): This is the average time in milliseconds
to find the first 20 steps of a path. This measures how
quickly a path is available to follow, which is important in
real-time applications such as games or robotics.

• Max. segment (ms): This is the average of the maximum
time required to produce any individual segment of a path.
This measures the worst-case real-time performance.

• Average Length: This is the average length of a returned
path. If an entry is optimal on long paths and suboptimal
on short paths this will be close to the average length,
since most of the length comes from the longest paths.

• Suboptimality: This is the average suboptimality of each
path. If an entry is optimal on long paths and highly sub-
optimal on short paths this measure will be large, since
most paths are short paths.

• Num. Solved: This is the total number of problems solved
out of 347, 868 ∗ 5 = 1, 739, 340 total.

• Invalid: This is the number of invalid solutions returned -
paths that are not well formed (e.g. adjacent locations in
the returned path are not adjacent on the map).

• Unsolved: This is the number of problems that were not
solved, returning no solution.

• RAM (before): This is the memory usage in MB after
loading the pre-computed data.

• RAM (after): This is the memory usage in MB after run-
ning the full problem set. This includes the memory used
to store the results, so this measure is artificially inflated
for all entries.

• Storage: This is the disk space used for all the pre-
computed storage.

• Precomputation time: This is the time (in minutes) re-
quired for the full pre-computation. Entries that perform
parallel pre-computation are marked with a † in the results
table in the next section.

Initial GPPC competitions limited the RAM and pre-
computation times, but these limitations have been lifted to
allow a more diverse set of entries at the cost of more signif-
icant computational requirements during the competition.
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Figure 1: Sample maps from the competition.

There were 14 programs entered in the 2014 competition
by 6 teams.1 These entries are described in detail in the fol-
lowing sections, but there are several high-level trends in the
entries. First, we see significant code re-use by new entries.
This has lowered the bar for participation, allowing entrants
to start with the best previous entries. The availability of past
entries also facilitates experimental comparison outside of
the competition. Next, we can categorize entries into several
high-level approaches. These include:

• Faster A* implementations. In the past this included
work such as pseudo-priority queues. This year there were
two entries in this category, Relaxed A* (RA*) and a
bucketed open list version of A*.

• Grid Exploitation. Several entries specifically work to
exploit the structure present in grids. This includes entries
based on Jump Point Search (Harabor and Grastien 2011)
and Subgoal Graphs (Uras and Koenig 2014). These tech-
niques are closely related, but a full description of their
relationship is beyond the scope of this writeup.

• Compressed All Pairs Shortest Paths. Compressed path
databases were the first approach to compressing the all-
pairs shortest path data (Botea 2012). This year there are
two new entries based on single-row compression (SRC).

• Other approaches. The subgoal approach contains some
ideas from contraction hierarchies (Geisberger et al.
2008); this year we also have a contraction hierarchy en-
try. Past years’ competitions also saw several suboptimal
approaches.

2014 Competition Results
The full results of the competition can be found in Table 2.
Entries in bold are those which are non-dominated by other
entries, forming a Pareto optimal frontier. That is, they have
better performance in at least one metric than all other en-
tries. The bolded metrics for these entries are the metics
across which they are non-dominated. After looking at gen-
eral trends we will return to study the dominated entries.

We note the following trends in the data:

• It is difficult to devise better open list structures and guar-
antee correctness. The RA* did this successfully. The
2012 Pseudo-Priority Queue (PPQ) approach had a very
small number of problems (23) that it could not solve.

1Code for these entries as well as detailed results can be found
on http://movingai.com/. Previous entries were stored on Google
code, but this service, at the time of this writing, is about to shut
down.

Otherwise it is significantly faster than RA* and has lower
suboptimality. The A* Bucket entry had similar issues,
but this entry was solicited relatively late from the orga-
nizer, and thus the participant had relatively little time to
test the entry before submission. We expect to see a sig-
nificantly improved entry next year.

• The subgoal approaches have steadily improved since
2012 and use relatively little RAM.

• The performance of the JPS entries has increased by
over a factor of 10 over the span of the competition,
and by an even larger factor when you consider the non-
preprocessed version of the algorithm.

• Contraction hierarchies (CH), which have been successful
in road networks, now have very good performance on
game maps as well.2

• Pre-computed direction heuristics (PDH) (Parra, de
Reyna, and Linares López 2012) were one of the few pre-
vious entries to take advantage of the incremental compu-
tation. This years’ single-row compression (SRC) entry is
both faster and optimal, but uses more memory.

• The fastest entry for finding full paths is still the 2013 Tree
Cache entry by Ken Anderson; new entries have focused
primarily on optimal paths.

• Although strictly speaking the BLJPS and NSubgoal en-
tries use the least RAM, many entries use similar amounts
of RAM, and the differences are not necessarily meaning-
ful in practice.

Due to space concerns, we do not break down this data
down further here (e.g. by map type or by path length). The
full data is available for others who are interested in such
analysis. We do, however, note here why each entry is dom-
inated or non-dominated, beginning with past entries.

• Past Entries

– The 2012 JPS entry is non-dominated because no other
optimal entries do not use pre-computation.

– The 2012 JPS+ entry is weakly dominated by the 2014
JPS+ entry. (Both entries are optimal, so they can never
be fully dominated.)

– The PPQ entry (Guivant, Seton, and Whitty 2012)
would be non-dominated, except that it didn’t solve 23
problems.

2The organizer worked with Robert Geisberger to use CHs on
grid maps in 2010, but the results were not nearly as good.



Table 2: 2014 GPPC Results with several previous results for comparison.

2014 Entries
Total Avg. 20 Step Max. Avg. Avg. Num. Num. Num. RAM RAM Pre-cmpt.

Entry (sec) (ms) (ms) Segment Len. Sub-Opt Solved Invalid Unsolved (before) (after) Storage (min.)
RA* 492,223.7 282.995 282.995 282.995 2248 1.0580 1739340 0 0 32.05 58.91 0MB 0.0

BLJPS 25,139.4 14.453 14.453 14.453 2095 1.0000 1739340 0 0 13.58 42.59 20MB 0.2
JPS+ 13,449.1 7.732 7.732 7.732 2095 1.0000 1739340 0 0 147.03 175.19 947MB 1.0

BLJPS2 12,947.4 7.444 7.444 7.444 2095 1.0000 1739340 0 0 13.96 42.68 47MB 0.2
RA-Subgoal 2,936.6 1.688 1.688 1.688 2142 1.0651 1739340 0 0 16.15 43.07 264MB 0.2
JPS+Bucket 2,811.6 1.616 1.616 1.616 2095 1.0000 1739340 0 0 379.32 407.46 947MB 1.0
BLJPS Sub 2,731.8 1.571 1.571 1.571 2095 1.0000 1739340 0 0 19.82 48.00 524MB 2.7
NSubgoal 1,345.2 0.773 0.773 0.773 2095 1.0000 1739340 0 0 16.29 42.54 293MB 2.6

CH 630.4 0.362 0.362 0.362 2095 1.0000 1739340 0 0 44.66 72.04 2.4GB 968.8
SRC-dfs-i 329.6 0.189 0.004 0.001 2095 1.0000 1739340 0 0 246.92 356.14 28GB †11649.5
SRC-dfs 251.7 0.145 0.145 0.145 2095 1.0000 1739340 0 0 246.92 274.16 28GB †11649.5

A* Bucket 59,232.8 36.815 36.815 36.815 2206 1.0001 1608910 80830 49600 3577.97 3605.79 0MB 0.1
SRC-cut-i 358.1 0.208 0.004 0.001 2107 1.0000 1725440 0 13900 431.09 540.94 52GB †12330.8
SRC-cut 276.5 0.160 0.160 0.160 2107 1.0000 1725440 0 13900 431.09 458.49 52GB †12330.8

Past Entries
JPS (2012) 108,749.9 62.524 62.524 62.524 2095 1.0000 1739340 0 0 252.18 278.97 0MB 0.0
JPS+ (2012) 36,307.5 20.874 20.874 20.874 2095 1.0000 1739340 0 0 356.28 383.05 3.0G 74.0
PPQ (2012) 28,930.3 16.634 16.634 16.634 2098 1.0033 1739225 115 0 47.87 74.05 0MB 0.0

Block (2012) 23,104.1 13.283 13.283 13.283 2413 1.1557 1739340 0 0 65.75 103.19 0MB 0.0
Subgoal (2012) 1,944.0 1.118 1.118 1.118 2095 1.0000 1739340 0 0 17.33 43.78 554MB 15.0
Subgoal (2013) 1,875.2 1.078 1.078 1.078 2095 1.0000 1739340 0 0 18.50 44.96 703MB 3.5

PDH (2012) 255.7 0.147 0.008 0.007 2259 1.1379 1739340 0 0 20.21 53.53 649MB 13.0
Tree (2013) 50.9 0.029 0.029 0.029 2564 2.1657 1739340 0 0 16.58 48.80 568MB 0.5

– Block A* (Block) (Yap et al. 2011) is dominated by
BLJPS except for storage. But, Block A* computes a
60MB table at runtime without saving it, as can be seen
by RAM usage, so we still consider this entry to be
dominated.

– The 2012 and 2013 Subgoal entries are dominated by
the NLevelSubgoal entry from 2014.

– The PDH entry is non-dominated because there is only
one entry with faster 20-step time, but it uses more stor-
age.

– The Tree entry is non-dominated because no entry finds
full paths faster than this entry.

• 2014 Entries

– The RA* entry uses the least amount of RAM for any
entry that does not perform precomputation, so it is not
dominated.

– BLJPS is dominated by BLJPS2 except for pre-
computed storage. It is the fastest optimal entry using
20MB or less of storage.

– JPS+ is dominated by BLJPS2, although the difference
is within the 99% confidence bounds described below.

– BLJPS2 is non-dominated because it is the fastest opti-
mal entry using 47MB or less of storage.

– RA-Subgoal is non-dominated because it is the fastest
entry using 264MB or less of storage.

– JPS+ Bucket is weakly dominated by NSubgoal with
the exception of pre-processing time. But, these differ-
ences are not necessarily meaningful.

– BLJPS Sub is weakly dominated by NSubgoal with the
exception of pre-processing time. But, these differences
are not necessarily meaningful.

– NSubgoal is non-dominated because it is the fastest op-
timal algorithm that uses 293MB or less of storage.

– CH is non-dominated because it is the fastest optimal
algorithm using 2.4GB or less of storage.

– SRC-dfs-i is non-dominated because it is the fastest in-
cremental algorithm (20 step and max segment time).

– SRC-dfs is non-dominated because it is the fastest al-
gorithm returning complete, optimal paths.

– A* Bucket would be non-dominated if it solved all
problems with better suboptimality or speed than all
other entries that do not perform pre-computation.
(This entry didn’t receive enough time for testing be-
cause it was a last-minute solicitation from the compe-
tition organizer.)

– The SRC-cut entries are dominated by the SRC-dfs en-
tries.

These results show that there are many algorithms on the
Pareto frontier.

In Table 3 we show the 95% confidence intervals for the
timing of each of the 2014 entries. These values are based
on the fact that each entry was run 5 times on each problem.
Thus, we use a t-test with five samples to compute the confi-
dence interval. Although the number of samples is small, the
confidence intervals are also small because we are running
so many problems (347,868) in each of the five samples. All
entries can be distinguished with 95% confidence. The clos-



est results are between the JPS+ and BLJPS2 entries; these
entries cannot be distinguished with 99% confidence.

2014 Competition Entries
In the following text, the authors of each entry describe their
own approach in detail. The sections are ordered according
to the overlapping content in each section.

Subgoal Graphs
The authors of this entry are Tansel Uras and Sven Koenig
from USC. They submitted the entry NSubgoal in Table 2.

This section describes two variants of Subgoal Graphs.
Simple Subgoal Graphs are constructed from grids by plac-
ing subgoals at the convex corners of obstacles and connect-
ing them. They are analogous to visibility graphs for contin-
uous terrain but have fewer edges and can be used to quickly
find shortest paths on grids. The vertices of a Simple Sub-
goal Graph can be partitioned into different levels to create
N-Level Subgoal Graphs (this year’s entry), which can be
used to find shortest paths on grids even more quickly by
ignoring subgoals that are not relevant to the search, which
significantly reduces the size of the graph being searched.

Simple Subgoal Graphs Simple Subgoal Graphs
(SSGs) (Uras, Koenig, and Hernández 2013) are con-
structed from grids by placing subgoals at the convex
corners of obstacles and connecting pairs of subgoals that
are direct-h-reachable. Definition 1 formally defines these
concepts. Vertices are put at the centers of unblocked cells.
The length of an edge is equal to the Octile distance between
the vertices it connects. Figure 3 shows an example of an
SSG. Observe that subgoals C and E are h-reachable but not
direct-h-reachable (due to subgoal D), so there is no edge
connecting them.

Definition 1. A cell s is a subgoal if and only if s is un-
blocked, s has a blocked diagonal neighbor t, and the two
cells that are neighbors of both s and t are unblocked. Two
cells s and t are h-reachable if and only if the length of a
shortest grid path between them is equal to the Octile dis-
tance between them. They are direct-h-reachable if and only
if they are h-reachable and none of the shortest paths be-
tween them pass through a subgoal.
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Figure 3: A Simple Subgoal Graph.

To find shortest grid paths using SSGs, one connects the
given start and goal vertices s and g to their respective direct-
h-reachable subgoals and searches this graph with A* to find

a sequence of direct-h-reachable subgoals connecting s and
g, called a shortest high-level path. One can then determine
a shortest grid path between consecutive subgoals to find a
shortest grid path between s and g. For instance, if we were
to use the SSG in Figure 3 to find a shortest grid path be-
tween B1 and H3, we would connect B1 to subgoals A and
B, H3 to subgoal F, and search this graph to find the shortest
high-level path B1-D1-D3-F5-H5-H3. Following this high-
level path on the grid, we obtain the shortest grid path B1-
C1-D1-D2-D3-E4-F5-G5-H5-H4-H3.

Identifying direct-h-reachable subgoals from a given cell
can be done efficiently with a dynamic programming algo-
rithm that uses precomputed clearance values. Using this al-
gorithm, SSGs can be constructed within milliseconds and
the start and goal vertices can be connected to the SSGs
quickly before a search.

N-Level Subgoal Graphs N-Level Subgoal Graphs (Uras
and Koenig 2014) are constructed from SSGs by creat-
ing a hierarchy among its vertices. This hierarchy is very
similar to Contraction Hierarchies (Geisberger et al. 2008;
Dibbelt, Strasser, and Wagner 2014a) described later in this
paper, except that N-Level Graphs can place multiple ver-
tices at the same level of the hierarchy and only add new
edges between h-reachable subgoals. The construction pro-
cess assigns a level of 1 to every subgoal and then repeatedly
partitions the highest-level subgoals into global and local
subgoals and increases the level of global subgoals by one
(any subgoal that is not at the highest level in the beginning
of partitioning is ignored during partitioning). This process
continues until the highest-level subgoals can no longer be
partitioned or the number of levels in the graph reaches a
user-defined limit. When partitioning the highest level sub-
goals into global and local subgoals, the partitioning has to
satisfy the following property: If any subset of local sub-
goals is removed from the graph, the lengths of the short-
est paths between the remaining local and global subgoals
must remain the same. Figure 4 shows a Two-Level Subgoal
Graph constructed from the SSG in Figure 3 (by adding an
edge between subgoals D and F).
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Figure 4: A Two-Level Subgoal Graph. Level 1 subgoals are
shown in red, and level 2 subgoals are shown in blue.

To find shortest paths using N-Level Subgoal Graphs,
one first connects the given start and goal vertices s and g
to their respective direct-h-reachable subgoals, identifies all
subgoals reachable from s and g via ascending edges (edges
from a subgoal to a higher-level subgoal, s and g are as-
sumed to have level 0 if they are not subgoals) and searches



Table 3: 2014 GPPC timing results with 95% confidence intervals.

Run Path 20 Step Segment
Entry Avg 95% Avg 95% Avg 95% Avg 95%
RA* 98,444.7 657.7 282.995 1.890 282.995 1.890 282.995 1.890

BLJPS 5,027.9 5.1 14.453 0.015 14.453 0.015 14.453 0.015
JPS+ 2,689.8 68.5 7.732 0.197 7.732 0.197 7.732 0.197

BLJPS2 2,589.5 0.9 7.444 0.003 7.444 0.003 7.444 0.003
RA-Subgoal 587.3 0.4 1.688 0.001 1.688 0.001 1.688 0.001
JPS+Bucket 562.3 1.3 1.616 0.004 1.616 0.004 1.616 0.004
BLJPS Sub 546.4 0.7 1.571 0.002 1.571 0.002 1.571 0.002
NSubgoal 269.0 0.8 0.773 0.002 0.773 0.002 0.773 0.002

CH 126.1 4.8 0.362 0.014 0.362 0.014 0.362 0.014
SRC-dfs-i 65.9 0.1 0.189 0.000 0.004 0.000 0.001 0.000
SRC-dfs 50.3 0.2 0.145 0.000 0.145 0.000 0.145 0.000

A* Bucket 11,846.6 110.1 36.815 0.342 36.815 0.342 36.815 0.342
SRC-cut-i 71.6 0.3 0.208 0.001 0.004 0.000 0.001 0.000
SRC-cut 55.3 0.2 0.160 0.001 0.160 0.001 0.160 0.001

the graph consisting of those subgoals and all highest-level
subgoals (and the edges between them), thus ignoring other
subgoals during search. For instance, if one were to use the
Two-Level Subgoal Graph in Figure 4 to find a path between
B2 and H3, the graph searched would include the subgoals
A, B, D, and F but not C and E.

The ordering in which vertices are considered during the
construction process determines the hierarchy obtained. As
Contraction Hierarchies show, good node contraction order-
ings can speed up path planning significantly, which is why
Contraction Hierarchy approaches often spend a significant
amount of preprocessing time on finding good node contrac-
tion orderings. It is future work to consider this effect in the
context of subgoal hierarchies, whose GPPC entries used an
arbitrary node ordering.

Jump Point Search (JPS)
As several entries are built upon Jump Point Search
(JPS) (Harabor and Grastien 2011; 2014), we provide a ba-
sic description of the algorithm as an introduction to these
entries.

JPS leverages the structure of grids to avoid reaching
many states via alternate/redundant paths. The core idea of
JPS is to order paths such that all diagonal moves are taken
first, followed by horizontal/vertical moves. This creates a
canonical ordering over all paths, ensuring that there is only
one path to each goal. However, this idea is not sufficient on
its own, because obstacles may block the natural canonical
path to a given goal. Thus, jump points are introduced. Jump
points are locations in the map where the canonical ordering
is partially reset in order to allow the search to move around
obstacles. We illustrate this in Figure 5. In Figure 5(a) we
show the states reachable according to the canonical order-
ing of states starting at S. In Figure 5(b) we add a jump point,
labeled J, where the canonical ordering is reset, allowing the
search to proceed down and to the right, reaching the goal.
The new neighbors of J are called forced neighbors.

The jump points depend on the obstacles in the map and
can be used at runtime or pre-computed beforehand. JPS is
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Figure 5: Basic JPS example.

efficient not only because it limits the number of symmetric
paths, but also because it reduces the number of nodes stored
in the open list. Instead of placing each successor of a node
on the open list, only jump points need to be put on the open
list. The following two entries build upon JPS to improve its
performance.

BLJPS
The authors of this entry are Jason Traish and James Tulip
from Charles Sturt University. They submitted the entries
BLJPS, BLJPS2 and BLJPS Sub in Table 2.

Boundary Lookup Jump Point Search (BLJPS) is an ex-
tension of Jump Point Search (JPS). BLJPS preprocesses
the boundaries on a map to speed up jump point detection.
Boundaries are used to identify jump points that exists along
the horizontal or vertical axis without iteratively checking
numerous cells.

Normal JPS behavior allows diagonal moves when the
relevant cardinal directions are blocked. However, for the
purposes of this competition, such moves are forbidden. In
the submitted code, toggling between these behaviors is con-
trolled by the flag variable DIAG UNBLOCKED.

The following example uses Figure 6 to demonstrate how
JPS moves from P1 to P4. Each cardinal direction check is
displayed as a dotted line. The search starts at P1 by check-
ing all 8 directions (cardinal plus diagonal) for Jump Points.
In this case, only the East, North and NE directions are ac-



cessible. JPS iterates over open locations along a cardinal
direction until it reaches a blocked location, at which point
it terminates without returning a jump point. In this case,
both East and North fail to return a jump point. The algo-
rithm then expands diagonally in the NE direction to loca-
tion (B8). It then repeats the iterative cardinal direction jump
point checks relative to NE (North and East). Again, it fails
to find a jump point along either axis, and the process is re-
peated until the diagonal expansion reaches a boundary or a
Jump Point is found in one of the relative cardinal directions.
In this case, the NE expansion continues to the location P2,
at which point the Eastern cardinal direction check returns
a potential Jump Point at P3, identified by the presence of a
forced neighbor. P2 is then added to the open list with the
direction NE. The discovery or not of a Jump Point in the
NE direction terminates the search from P1, since only N,
E, and NE directions were accessible.

The top node within the open list is then popped, return-
ing P2. Natural neighbor directions for a NE expansion (N,
E, NE) are then searched. The North and NE searches find
no further jump points, but the East direction has P3 as a po-
tential Jump Point. P3 is evaluated as an actual Jump Point
in a manner similar to P2. However, the SE direction is also
searched as a result of the forced neighbor at P4. Stepping in
the SE direction identifies that the goal P4 has been reached.
This confirms P3 as a Jump Point and completes the path
(P1, P2, P3, P4).

Table 4 shows the boundary lookup table correspond-
ing to Figure 6. The values in Table 4 record boundaries
where cells toggle between blocked and open states, start-
ing from the western (or northern) boundaries. Rows such
as 1 through 5 have no obstructions resulting in the horizon-
tal boundary lookup recording the map width (N). Rows 6
through 9 however have a boundary at K and thus record
this as the first entry. The boundary then reopens on cell L
and again is blocked by the width of the map (N).

BLJPS identifies jump points in eastern/western direc-
tions when it has a boundary that is further in the given di-
rection than the reopen value for the rows above and below
it. For example (A5) to the East has a boundary of N which
is less than the reopen value of row below it (Row 6). Row
6’s boundary is K and reopens to the east at L which is less
then N, resulting in a jump point found at (L-1=K row 5,
K5) or P3. If the direction is changed to West moving from
(M5) the boundary is off the map at -A. The row 6 that is
beneath 5 hits K as the western boundary and reopens on
(K-1=L) which is not as far in the western direction as the
-A boundary.

BLJPS2 optimizes this approach by storing the jump
points for the four cardinal directions within separate lists.
This reduces the number of table lookups from three to one
for axis each check.

BLJPS SubGoal is a hybrid approach between BLJPS
and SubGoal. It uses the same high level graph pruning ap-
proach as SubGoal, but substitutes low level subgoals with
Jump Points in order to exploit the directionality of JPS.
However, attaching the goal node to the low level SubGoal
graph proved computationally expensive, and no improve-
ment over the basic SubGoal algorithm was noted. SubGoal

Table 4: Boundary Lookup Table - Used to determine the
nearest obstacle boundary along either the horizontal or ver-
tical axis.

Horizontal Boundary Lookup Vertical Boundary Lookup
Cells 1 to 5: (N) Cells A to J: (10)
Cells 6 to 9: (K,L,N) Cell K: (6)

Cell L, M, N: (10)

Figure 6: Boundary lookup example on a 13x9 uniform grid.
Blacked cells K6-K9 are obstacle boundaries. P4 is a forced
neighbor of P3.

was retrieved from 2013 entries of the Grid-Based Path Plan-
ning Competition.

Optimized JPS+
The author of this entry is Steve Rabin. Submitted entries
include JPS+, JPS+Bucket, and A* Bucket.

JPS+ precomputes 8 values per node (one per edge),
which helps guide the search at runtime to predetermined
jump point nodes. Significant node pruning is realized
through a combination of search via a canonical ordering
and jumping over nodes on the way to pivotal jump point
nodes. This has the effect of speeding up the search by exam-
ining fewer nodes and consequently maintaining a reduced
set of nodes on the open list.

Optimized JPS+ was programmed using a number of best
practices, each contributing a small amount to the overall
speed. The node data maintained for the search was preal-
located in a 2D array and a search iteration count stored in
each node avoided the need to reset node data before each
search. All costs were performed using fixed-point math and
the heuristic was calculated with the octile heuristic: be-
tween two points we compute the maximum and minimum
distances in each cardinal direction. The octile distance is
then (minDiff ∗ (

√
2 − 1.0) + maxDiff). Additionally, if

a node was already on the open list and its cost needed to
be updated, the heuristic was extracted, thus avoiding hav-
ing to recalculate it. Finally, the open list used a heap pri-
ority queue augmented with a hash table to speed up the



DecreaseKey operation that occurs when A* finds a shorter
path to an existing node in the search.

The Bucket version of optimized JPS+ exchanged the
heap priority queue for a priority queue implemented us-
ing buckets, indexed by cost, containing a stack within each
bucket. The required number of buckets is 10x the largest
search cost with a node’s bucket index equalling 10 times
the final cost, resulting in a 0.1 cost variation within each
bucket. A pointer kept track of the cheapest non-empty
bucket, which was updated on adds and removals as nec-
essary. A search iteration count was used inside each bucket
to implement a lazy reset with each new search.

Two significant optimizations were not implemented in
time for the competition, but each have been shown to speed
up JPS+ search even further. Using a fast stack optimization
is very helpful, as implemented in the 2013 contest entry of
Subgoal. This optimization puts nodes on a stack instead of
in the open list if they are equal to the cost of the parent.
Nodes are then removed off the fast stack before checking
the open list. Note that this optimization is only valid on
grid search spaces using the octile heuristic. Additionally,
a function pointer lookup table based on the wall pattern
and parent direction has been shown to speed up searches by
eliminating conditionals (2,048 entries pointing at 48 unique
functions). Lastly, as a memory optimization, the number of
buckets can be reduced by rebasing all search costs by the
original octile heuristic cost of the start node.

For comparison purposes, A* Bucket is an A*-based entry
using buckets for the open list in a similar fashion to the
JPS+.

Relaxed A*
This entry was written by a research team at
http://www.iroboapp.org/. Due to non-scientific
concerns, the author of this work were unable to participate
in this paper; this description is written by the competition
organizer.

The researchers in this group submitted the entries la-
belled RA* and RA-Subgoal in Table 2. Their entry relaxes
the behavior of A* in three ways. First, it doesn’t allow the
g-cost of a node to be changed once it has been set the first
time. Second, since nodes only have their g-cost updated
once, the open list doesn’t have to be explicitly checked for
membership when opening a node with A*. All nodes on
the open will have infinite g-costs. Finally, the entry doesn’t
maintain parent pointers, but assumes that the parent of a
node is the one with the lowest g-cost.

This approach is applied first to a regular A* search, and
then to the A* search that is part of subgoal graphs (Uras,
Koenig, and Hernández 2013). The subgoal code is built
from the SubgoalGraph-Fast code from the 2013 GPPC
competition.

Contraction Hierarchies (CH)
The author of this entry is Ben Strasser from Karlsruhe In-
stitute of Technology, labeled CH in Table 2.

A CH is a speedup technique to compute shortest paths
in general weighted graphs. The technique works in two

phases: A preprocessing and a query phase. The prepro-
cessing phase is slow and augments the graph with auxil-
iary data. The endpoints of the desired path are the input
of the query phase. The query phase can make use of the
auxiliary data and should run very fast. The technique was
introduced in (Geisberger et al. 2012) and has been the focus
of many research papers since then. The technique has been
evaluated very extensively on road graphs in various inde-
pendent studies. However, there have been questions about
whether the technique is feasible on graphs originating from
game grids or whether the technique needs tweaking. The
sole goal of this submission is to establish this. We have not
optimized the submission for game maps. In fact the code
is taken from the implementation of (Dibbelt, Strasser, and
Wagner 2014b) and mostly wrapped. It should be possible to
tune the code. For example the preprocessing code does not
exploit that game graphs are undirected. Doing so should be
straight-forward and should yield a factor of 2 in terms of
preprocessing running time.

The core idea of the algorithm is easy but needs some no-
tation. Denote by G the input graph, which for this compe-
tition is undirected. The auxiliary data consists of a directed
acyclic search graph G′ with the same node set than G that
fulfills the cover-property: For each pair of source node s
and target node t, there exists a node m, such that for each
shortest st-path P in G, there exists a sm-path P ′u and a
tm-path P ′d in G′ such that the length of P is the same as
the sum of the lengths of P ′u and P ′d. By convention we say
that arcs in G′ point from the bottom to the top. We refer to
P ′u as the upward path and to P ′d as the downward path. We
refer to the pair of P ′u and P ′d as an up-down path.

Think of the top nodes as important nodes that cover many
shortest paths. These could for example be bridges in road
graphs. The bottom nodes are very unimportant. Think of
them as dead-ends. You can think of an up-down path as a
coarsened version of a shortest path in G. Coarsened means
that all the edges between two top nodes, i.e. bridges, are
missing. The idea of the algorithm consists of searching for
P ′u and P ′d, i.e. an up-down path, instead of P . It does so
using two instances of Dijkstra’s algorithm that operate on
G′. The first instance searches starting from s and the second
instance from t. The node m will be found by both searches.
The first instance finds P ′u and the second finds P ′d and from
there the path in G can be reconstructed. We refer to the
subgraph of G′ reachable from a node x as the search space
of x. The key ingredient is to find a graph G′ such that all
search spaces are small.

To construct G′ we need the concept of (weighted) node-
contraction. This is the operation that has given CHs their
name. A node contraction consists of removing a node x
from a graph H and inserting an edge between two neigh-
bors y and z if the path y→x→z is the only shortest yz-path.
Testing whether y→x→z has this property is done by run-
ning Dijkstra’s algorithm on H\{x} to check whether the
shortest yz-path in H\{x} is longer than y→x→z. This op-
eration is called witness search. The idea is to remove x from
H while maintaining all shortest path distances in H\{x}.
G′ is constructed from G by iteratively contracting unimpor-
tant nodes along a contraction order o1 . . . on. Denote by Gi



the graph that remains after the first i − 1 nodes have been
contracted, i.e., G1 = G and Gi is obtained by contracting
oi−1 in Gi−1. While enumerating these Gi the algorithm
constructs G′ as following: The outgoing arcs of oi are to-
wards the neighbors of oi in Gi. This construction fulfills
the cover-property as was shown in (Geisberger et al. 2012).

The remaining key question is how to determine a good
node contraction order. This is by far the slowest part of the
preprocessing. Several approaches exist in the literature. The
original CH-paper (Geisberger et al. 2012) uses a bottom-
up approach that greedily determines the most unimportant
node during the CH contraction. In (Abraham et al. 2012) a
top-down approach was introduced. The idea is that the most
important node is the node that lies on the most non-covered
shortest paths. (A path is covered if it contains a node al-
ready put into the order.) Bottom-up approaches work ex-
tremely well in practice on road-like graphs but have the el-
egance of a cooking recipe: You throw a mixture of heuris-
tics at the problem and then in the end it somehow works
out. To the best of our knowledge nobody really knows why
one recipe is superior to some other recipe. Top-down ap-
proaches are more elegant but in their basic variant slower.
In (Delling et al. 2014) a fast sampling based top-down ap-
proach was introduced. Both the bottom-up and top-down
approaches compute orders that depend on the edge weights
of G. Changing the weights requires computing a new or-
der. In (Dibbelt, Strasser, and Wagner 2014b; Bauer et al.
2013) a third weight-independent construction based on bal-
anced graph separators was introduced and shown to come
extremely close in terms of query performance to weight-
dependent orders. This weight-independent construction is
tightly coupled with the theory of tree-decompositions.

The GPPC submission uses a comparatively slow but
high-quality bottom-up ordering approach. The core idea is
to interweave the construction of G′ and the contraction or-
der. The algorithm determines for every node x in Gi an
importance value Ii(x). It then sets oi = min arg Ii(x).
In the following we will drop the i-index and from Ii to
avoid unnecessary notational clutter. To avoid recomputing
all I(x) in each iteration a priority queue is used that orders
all nodes by their current importance. Contracting a node
only modifies the importances of neighboring nodes. These
values are updated in each iteration and the algorithm con-
tinues by contracting the node with a minimum I(x). The
definition of I(x) is a cooking recipe. We start by defining
all the ingredients. We denote by L(x) a value that approxi-
mates the level of vertex x in G′. Initially all L(x) are 0. If x
is contracted then for every incident edge {x, y} we perform
`(y) ← max{`(y), `(x) + 1}. We further store for every
arc a a hop length h(a). This is the number of arcs that the
shortcut represents if fully unpacked. Denote by D(x) the
set of arcs removed if x was contracted and by A(x) the set
of arcs that would be inserted. The sets A(x) and D(x) are
computed by simulating the node contraction. We set:

I(x) = L(x) +
|A(x)|
|D(x)|

+

∑
a∈A(x) h(a)∑
a∈D(x) h(a)

This formula originates from (Abraham et al. 2012). Note
that the original CH variant (Geisberger et al. 2012) contains

significantly more heuristic aspects that aim at reducing pre-
processing time. For example their variant aborts the witness
searches if Dijkstra’s algorithm runs for too long and it does
not update all I(x) but use a technique called lazy-pop. Our
GPPC submission does none of this.

To illustrate the performance of CHs we ran an exper-
iment on the StarCraft IceFloes map. It has 91,123 cells
which translate a graph G with 91,123 nodes and 347,624
edges with weights 1 or

√
2. Determining the order needs

a bit less than 2 minutes. The search graph G′ contains
733,114 arcs. On average the search space of a random uni-
form node contains 680 nodes and 6,677 arcs. The search
graph G′ has 48 levels. This CH performance is very good.
It is only very rarely possible to get less than two search
graph arcs per input edge while maintaining search spaces
of reasonable size. However, we believe that by exploiting
the map-structure of the input instances significant improve-
ments can still be made. For example the encoding of the
input map as two-dimensional bitmap is far more memory
efficient than any equivalent general purpose graph repre-
sentation. Leveraging this observation could lead to a sig-
nificantly lower memory footprint.

Single Row Compression (SRC)
The authors of this entry are Ben Strasser, Adi Botea, and
Daniel Harabor, corresponding to the entries SRC-dfs, SRC-
dfs-i, SRC-cut, SRC-cut-i in Table 2.

SRC is a speedup technique to compute shortest paths in
general weighted graphs of bounded degree. The technique
was introduced in (Strasser, Harabor, and Botea 2014) and
its theoretical complexity studied in (Botea, Strasser, and
Harabor 2015). It works in two phases: A preprocessing and
a query phase. The preprocessing phase is slow and aug-
ments the graph with auxiliary data. The endpoints of the de-
sired path are the input of the query phase. The query phase
can make use of the auxiliary data and must run very fast.

A very elementary technique that uses this setup consists
of computing a large matrix A of first moves. A first move
from the source node s to the target node t is the first edge
of a shortest path from s to t. Each entry aij of the matrix A
corresponds to the first edge of a shortest path from the i-th
node to the j-th node. By convention we say that the i-th row
contains all first moves from the i-th node to all other nodes.
Similarly the j-th column contains all first move towards the
j-th node. The query phase of this setup is extremely fast and
consists most of the time of a single random memory access.
The downside of this approach is that the matrix needs space
quadratic in the node count and this is prohibitive for large
graphs.

SRC mitigates this space problem by exploiting a very
simple observation: All edges in a row must be outgoing
edges of a single node. If we assume that the graph is of
bounded degree then many edges must be repeated. SRC ex-
ploits this fact by compressing each row individually using
a run-length encoding (RLE). If done properly, query run-
ning times can be answered in time logarithmic in the length
of a compressed row. Unfortunately, it is possible that rows
do not compress well using RLE. SRC therefore first per-



mutes the nodes in such a way that similar first-moves tend
to appear adjacent in a row. Unfortunately, computing a node
order that minimizes the number of runs is NP-hard as was
shown in (Botea, Strasser, and Harabor 2015). Fortunately
heuristics work well in practice: In (Strasser, Harabor, and
Botea 2014) the dfs-order and the cut-order were proposed.
The dfs-order is extremely simple and consists of reordering
the nodes using a depth-first preorder from a random root
node. The cut-order is more complex and recursively parti-
tions the graph. On most tested graphs the cut-order works
slightly better than the dfs-order. However for unknown rea-
sons on some graphs the cut-order is far inferior. This leads
to a bad compression ratio. This in term leads to an integer
overflow which explains why the cut-order submission fails
on a few graphs. To gain an intuition for how a good order
looks like consider the USA-road graph. Consider the row
R of some node in the south east. If the destination is in the
north west, the path will most likely always start with the
same first move. The key to success is finding a node order
that assigns continuous node ids to all nodes in the north
west. Such an order assures that all of the north west part of
the USA collapses to a single run in R.

The strength of SRC lies in computing first-moves very
quickly. The main downside lies in its preprocessing time
that is quadratic in the node count as it must compute A.
The compressed space consumption is large compared to
some other techniques but manageable. Notice that comput-
ing first moves quickly does not automatically translate into
the fastest algorithm to compute full paths quickly. The rea-
son is inherent to all techniques that compute paths an edge
at a time. This includes even the elementary quadratic ma-
trix approach. Such algorithms need to pay a random mem-
ory access per edge. An algorithm that has large parts of
the paths preassembled in memory only needs to pay one
random memory access per part. Because of caching effects
this can be significantly faster. (A sequential memory access
can be about 70 times faster than a random one on current
hardware.) However, in many important scenarios the more
cache friendly path computation does not pay off in the end.
Consider a game unit that needs to navigate to a certain po-
sition. There are two different setups: (1) When starting its
journey the unit computes the whole path and stores it some-
where. Each time the unit reaches the end of an edge it looks
up the next edge, i.e., a random memory access is needed. (2)
Each time a unit reaches the end of an edge it computes only
the next edge. Setup (1) can look better than (2) in labora-
tory conditions because measured running times often only
account for the time needed to compute the path. The time
that the unit spends looking up the individual edges is often
neglected. Further, the approach (1) needs to store a vari-
able length path in memory. This results in addition time
needed for memory management and more importantly in
a non-constant memory consumption per unit. Consider the
extreme case where there are ω(n) units that have stored
path with Θ(n) edges (n being the number of nodes). This
results in ω(n2) memory consumption. Even setup 2 with
the quadratic matrix approach uses only Θ(n2) memory in
this case.

The Table 2 contains 4 variants of our algorithm. The

cut/dfs part refers to the node order used. The “-i” indi-
cates whether the full path was extracted in one function
call or whether the path was extracted edge by edge. In the-
ory this should not make a difference. However, in prac-
tice it influences how often the timing code is called. If
the path is extracted in one function call the timing code
only runs before and after each path query. However, if the
path is extracted edge-by-edge the timing code runs once per
edge. This slightly different experimental setup results in the
0.044ms difference between the average path extraction run-
ning times of “dfs-i” and “dfs”.

Looking Ahead and Conclusions

The GPPC covers a variety of grid-based pathfinding prob-
lems. Several primary competing approaches have been de-
veloped which take advantage of the grid structure and sig-
nificantly improve performance over basic A* implementa-
tions. Thus, the competition has successfully documented
significant improvement in grid-based pathfinding and made
high-quality pathfinding implementations available for ex-
perimentation and testing.

Looking at applications of the work, the competition cov-
ers a subset of the problems that are interesting to the games
industry, but doesn’t address some real-world problems that
must sometimes be solved when grids are being used. In
particular, grids are often used in dynamic environments
where the world and/or the cost of moving through the world
changes regularly (Sturtevant 2013). This is because a grid
representation is easy and inexpensive to update as the world
changes.

The current competition doesn’t allow for dynamic
weights in the map or dynamic maps, and a new track de-
signed to foster this sorts of comparisons did not receive any
entries. In some sense this isn’t completely surprising, as
there has been many years of work on grid methods, so there
was a large pool of work ready to enter into the competition.
Also, there are many ways to test dynamic maps, and there
may be a need for different testing for more robotic-like en-
vironments versus game environments.

But, after several years of the competition, we can see a
core of main ideas that are used to improve performance,
with a range of memory and pre-computation requirements.
As these approaches are iteratively improved, we look for-
ward to seeing additional techniques which fill in the gap
between these entries. In particular, there is significant room
for innovation for real-time and suboptimal entries.

Going forward, it is important to address how to challenge
the research community to move beyond the uniform cost
grid pathfinding problem and into problems that are more
representative of real-world problems faced by practition-
ers. For instance, the first author of this paper is working
with the games industry to get more maps and map types that
will give meaningful data to be studied by researchers. Care-
ful consideration will be given to how the competition can
be used to encourage research into different problem types
that have even wider application across a broader range of
domains.
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Precomputed-direction heuristics for suboptimal grid-based
path-finding. In Borrajo et al. (2012).
Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast first-
move queries through run-length encoding. In Edelkamp,
S., and Barták, R., eds., Proceedings of the Seventh Annual
Symposium on Combinatorial Search, SOCS 2014, Prague,
Czech Republic, 15-17 August 2014. AAAI Press.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144–148.
Sturtevant, N. R. 2013. Choosing a search space repre-
sentation. In Game AI Pro: Collected Wisdom of Game AI
Professionals. CRC Press.
Uras, T., and Koenig, S. 2014. Identifying hierarchies for
fast optimal search. In Brodley, C. E., and Stone, P., eds.,
Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, July 27 -31, 2014, Québec City, Québec,
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