Using Alternative Suboptimality Bounds in Heuristic Search

Richard Valenzano, Shahab Jabbari Arfaee

University of Alberta
{valenzan,jabbaria} @cs.ualberta.ca

Roni Stern
Harvard University
roni.stern @ gmail.com

Abstract

Most bounded suboptimal algorithms in the search literature
have been developed so as to be e-admissible. This means
that the solutions found by these algorithms are guaranteed
to be no more than a factor of (1 + €) greater than optimal.
However, this is not the only possible form of suboptimality
bounding. For example, another possible suboptimality guar-
antee is that of additive bounding, which requires that the cost
of the solution found is no more than the cost of the optimal
solution plus a constant .

In this work, we consider the problem of developing algo-
rithms so as to satisfy a given, and arbitrary, suboptimality
requirement. To do so, we develop a theoretical framework
which can be used to construct algorithms for a large class
of possible suboptimality paradigms. We then use the frame-
work to develop additively bounded algorithms, and show
that in practice these new algorithms effectively trade-off ad-
ditive solution suboptimality for runtime.

1 Introduction

When problem-solving in domains with large state spaces, it
is often not feasible to find optimal solutions given practical
runtime and memory constraints. In such situations, we are
forced to allow for suboptimal solutions in exchange for a
less resource-intensive search. Algorithms which may find
such solutions are called suboptimal algorithms.

Some suboptimal algorithms satisfy a suboptimality
bound, which is a requirement on the cost of any solution
that is set a priori of any problem-solving. By selecting
a suboptimality bound, a user defines the set of solutions
which are considered acceptable. For example, where C* is
the optimal solution cost for a given planning task, the e-
admissible bound requires that any solution returned must
be from the set of solutions whose cost C satisfies the rela-
tion C < (1+4¢)-C*.

Notice that requiring an algorithm to be e-admissible for
some particular e involves setting a maximum of (1 + ¢) on
the solution suboptimality, where suboptimality is measured
by C/C*. Since the development of the first e-admissible al-
gorithm, Weighted A* (WA*) (Pohl 1970), this suboptimal-
ity measure has been by far the most commonly used mea-
sure. For example, ever since 2008, the International Plan-

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Jordan Thayer
Smart Information Flow Technologies
jordan.thayer @ gmail.com

Nathan R. Sturtevant
University of Denver
sturtevant@cs.du.edu

ning Competition (IPC) satisficing track scoring function
has been based on the idea that the relative suboptimality of
two plans is given by their ratio. The popularity of this sub-
optimality measure can also be seen in the fact that the ma-
jority of algorithms with suboptimality guarantees that have
been developed since WA* have been e-admissible, includ-
ing A} (Pearl and Kim 1982), Optimistic Search (Thayer
and Ruml 2008), and EES (Thayer and Ruml 2011). How-
ever, there also exists other ways to measure suboptimality
and other types of suboptimality bounds. For example, one
alternative to C'/C* is to measure suboptimality by C' — C*.
A bound corresponding to this measure would then require
that any solution returned must have a cost C' such that
C < C* + ~ for some v > 0.

In this paper, we consider such alternative suboptimality
bounds so as to evaluate the generality of existing methods
and to give more choice into how suboptimality guarantees
can be specified. If a system designer wishes to have guaran-
tees (or to use suboptimality measures) that are not based on
e-admissibility, they currently have no means to do so, and
yet despite the popularity of this paradigm, it is not neces-
sarily suitable in all cases. For example, consider a problem
in which plan cost refers to the amount of money needed to
execute the plan. The value (or utility) of money is known to
be a non-linear function (ie. $10 is more valuable to some-
one with no money than it is to a billionaire). In particu-
lar, assume that that for some individual the utility of a plan
with cost C' is given by K — log,(2 + C) for some con-
stant K > 0 and the desired guarantee on suboptimality is
that the utility of any plan found will be no more than 10%
worse than is optimally possible. While any solution found
by a WA* instance parameterized so as to be 0.1-admissible
is guaranteed to be at most 10% more costly than the opti-
mal solution, clearly this does not actually correspond with
the desired requirement on utility. Moreover, it is unclear
how to parameterize WA* correctly so as to satisfy the given
requirement without prior knowledge of C*.

These issues raise the following question: how can we
construct algorithms that are guaranteed to satisfy a given
suboptimality bound? In this paper, we show that four dif-
ferent classes of existing algorithms can be modified in this
end. These classes are anytime algorithms, best-first search
algorithms, iterative deepening algorithms, and focal list
based algorithms. As each of these algorithm paradigms is



Notation Meaning

n; the initial node

c(n,n’)  cost of the edge between n and n’

c* the cost of the optimal path

pred(n)  stored predecessor (or parent) of n

g(n) cost of the best path from n; to n found so far
g*(n) cost of optimal path between n; and n

h*(n) cost of optimal path from n to a goal

h(n) heuristic estimate of cost to nearest goal node

h is admissible if h(n) < h*(n) for all n

Table 1: Heuristic search notation.

best-suited for different types of problems, by extending
them all so as to be able to handle arbitrary bounding con-
straints, we are allowing a system designer to not only spec-
ify a desired form of bounding, but to also select the best
search framework for their particular domain.

The contributions of this paper are as follows. First, we in-
troduce a functional notion of a suboptimality bound so as to
allow for the definition of alternative bounding paradigms.
We then develop a theoretical framework which identifies
how existing algorithms can be modified so as to satisfy
alternative bounds. Finally, we demonstrate that the frame-
work leads to practical algorithms that can effectively trade-
off guaranteed solution quality for improved runtime when
considered for additive bounds.

2 Algorithms for Arbitrary Bounds

In this section, we will generalize the notion of a subopti-
mality bound and consider ways in which we can modify ex-
isting algorithms so that they are guaranteed to satisfy large
classes of possible bounds. Table 1 lists some notation that
will be used throughout this paper.

2.1 Bounding Functions

Recall that the e-admissible bound requires that the cost C'
of any solution returned must satisfy C' < (1 +¢€) - C* for
a given € > (0. We generalize this idea by allowing for an
acceptable level of suboptimality to be defined using a func-
tion, B : R — R. This bounding function is used to define
the set of acceptable solutions as those with cost C' for which
C < B(C*). This yields the following definition:

Definition 1 For a given bounding function B, an algorithm
A will be said to satisfy B if on any problem, any solution
returned by A will have a cost C for which C < B(C*).

As an example of how this definition applies, notice that
the e-admissible requirement corresponds to the bounding
function B.(x) = (1 + ¢€) - z, since an algorithm is e-
admissible if and only if it satisfies B.. Similarly, an al-
gorithm is optimal if and only if it satisfies the bounding
function B, (x) = z. Other bounding functions of interest
include B, (z) = x +  for some v > 0, which corresponds
to an additive bound, and B(x) = z + log z, which allows
for the amount of suboptimality to grow logarithmically.

Notice that for all these bounding functions, B(x) > «
for all x. This is a necessary condition, as to do otherwise is
to allow for bounding functions that require better than op-
timal solution quality. Any bounding function B satisfying
this requirement will also be trivially satisfied by any opti-
mal algorithm. However, selecting an optimal algorithm for
a given B (where B # B,:) defeats the purpose of defining
an acceptable level of suboptimality, which was to avoid the
resource-intensive search typically required for finding opti-
mal solutions. The goal is therefore not only to find an algo-
rithm that satisfies B, but to find an algorithm which satisfies
B and can be expected to be faster than algorithms satisfy-
ing tighter bounds. In the remainder of this section, we do
so in several well-known heuristic search frameworks.

2.2 Bounding with Anytime Algorithms

In this section, we will demonstrate that we can use any-
time algorithms, regardless of the suboptimality paradigm
they were initially developed for, to satisfy any monotoni-
cally non-decreasing bounding function. We then argue that
this approach is problematic and that we instead need algo-
rithms tailored specifically for the given bounding function.

So as to use an anytime algorithm to satisfy a monotoni-
cally non-decreasing bounding function B, we will require
that during execution of the algorithm, there is a lower bound
L on the optimal cost that is available. Let C be the cost
of the incumbent solution. Since B is monotonically non-
decreasing, this means that if C' < B(L) then C' < B(C*).
Therefore, we can use an anytime algorithm to satisfy B by
only terminating and returning the incumbent solution when
its cost satisfies C' < B(L).

For example, consider Anytime Weighted A* (AWA*)
(Hansen and Zhou 2007). This algorithm runs WA* to find
a first solution, and then continues the search so as to find
better solutions. Hansen and Zhou showed that the lowest
f-cost of all nodes on the open list offers a lower-bound on
C*, where f(n) = g(n) + h(n) and h is admissible. Af-
ter each node expansion, we can then use the value of this
lower bound, L, and the cost of the incumbent solution, C,
to check if C < B(L) is true, in which case we can ter-
minate. This technique was first considered by Thayer and
Ruml (2008) who ran AWA™ as an e-admissible algorithm.
To do so, they parameterize AWA™ so that it can be expected
to find an initial solution quickly, even if the cost of that so-
lution does not satisfy C' < B.(C™). They then continue the
search until the incumbent solution does satisfy this condi-
tion. Above, we have extended this technique so as to satisfy
any monotonically non-decreasing B, even when the ini-
tial algorithm was designed for some other bounding func-
tion B’. This means that we can use AWA*, or any other
e-admissible anytime algorithm that can maintain a lower-
bound on C*, to handle other bounding functions.

However, the performance of AWA* is greatly affected
by a parameter, called the weight, which determines the al-
gorithm’s greediness. While it is not too difficult to set the
weight when AWA* is to be used as an e-admissible algo-
rithm, it is not clear how to set it — in general and without
prior domain knowledge — when AWA™ is to be used to sat-
isfy some other bound, such as C' < C* 4 log C* for exam-



Algorithm 1 Best-First Search (BFS®)
1: g(n;) =0, pred(n;) = NONE
2: OPEN « {n;}, CLOSED « {}
3: while OPEN is not empty do
4 n < argmin,copen ®(n')
5 if n is a goal node then
6: return solution path extracted from CLOSED
7
8
9

for all child n. of n do
if n. € OPEN U CLOSED then
if g(n) + c(n,nc) < g(nc) then

10: 9(ne) = g(n) + e(n, ne)

11: pred(ne) < n

12: if n. € CLOSED then

13: CLOSED+ CLOSED—{n.}
14: OPEN< OPEN U{n.}

15: else

16: 9(ne) = g(n) + c(m, ne)

17: pred(ne) < n

18: OPEN + OPEN U{n.}

19:  CLOSED « CLOSED U{n}
20: return no solution exists

ple. This is problematic since this parameter can have a large
impact on performance. If AWA* is set to be too greedy, it
may find a first solution quickly, but then take too long to
improve its incumbent solution to the point of satisfying the
bounding function. If AWA* is not set to be greedy enough,
it may take too long to find an initial solution. This sug-
gests the need for algorithms specifically targeted towards
the given bounding function. Constructing such algorithms
is therefore the task considered in the coming sections.

2.3 Bounding in Best-First Search

Best-first search (BFS) is a commonly used search frame-
work that has been used to build many state-of-the-art auto-
mated planners for both optimal (Helmert and Roger 2011)
and satisficing planning (Richter and Westphal 2010). This
popularity is due to its robustness over a wide range of do-
mains. In this section, we will show how to construct BFS-
based algorithms for a large class of bounding functions by
generalizing the WA* evaluation function.

We define best-first search, pseudocode for which is
shown in Figure 1, as a generalization of A* and Djikstra’s
algorithm, and we assume the reader’s familiarity with the
use of the OPEN and CLOSED lists in these algorithms.
The definition we use generalizes these algorithms by al-
lowing for the use of any arbitrary evaluation function ® to
order nodes on OPEN. Notice that in our generalization we
do require that a node on CLOSED is moved back to OPEN
whenever a lower cost path is found to it (line 12).

For convenience, we use the notation BFS? to denote
a BFS instance which is using the evaluation function ®.
For example, the A* algorithm (Hart, Nilsson, and Raphael
1968) is BFS/ where f(n) = g(n) + h(n) and h is admis-
sible, and Dijkstra’s algorithm (Dijkstra 1959) is BFSY (Fel-
ner 2011). WA™ is another instance of BFS (Pohl 1970). It
uses the evaluation function f.(n) = g(n) + (1 +¢) - h(n)
(ie. WA* is BFS/<) and is e-admissible if A is admissible.
In practice, WA* often solves problems faster than A*. This

is a result of f. which emphasizes the relative importance
of h relative to g, and therefore allows WA* to search more
greedily on h than does A*.

Also notice that f.(n) = g(n) + Bc(h(n)). This suggests
the use of the evaluation function ®5(n) = g(n)+ B(h(n))
for satisfying a given bounding function B since it similarly
puts additional emphasis on h. Below, we will show that this
approach will suffice for a large family of bounding func-
tions. To do so, we will first require the following lemma:

Lemma 2.1 Let P,,; be any optimal path for a given prob-
lem. At any time during a BFS® search prior to a goal node

being expanded, there will be a node p on P,y that is on
OPEN and such that g(p) = g*(p).

This lemma generalizes Lemma 1 of Hart, Nilsson, and
Raphael (1968) and it holds for BFS?® since the algorithm
will move any node on CLOSED back to OPEN whenever a
shorter path is found to it. This lemma will now allow us to
prove Theorem 2.1 which provides sufficient conditions on
& for satisfying a given bounding function B.

Theorem 2.2 Given a bounding function B, BFS® will
satisfy B if the following conditions hold:

1. Y node n on some optimal path, ®(n) < B(g(n)+h*(n))
2. ¥ goal node ng, g(ng) < ®(ng)

Proof Assume that a goal node n, has been expanded by
BFS?®. Now consider the search immediately prior to n,
being expanded. By Lemma 2.1, there exists a node p on
OPEN such that p is on some optimal path F,,; and
g(p) = ¢g*(p). Since n, is selected for expansion, this im-
plies that ®(p) > ®(ngy) by the definition of BFS. By our
assumptions, this means that B(g(p) + h*(p)) > ®(ng).
Since g*(p) + h*(p) = C* and g(p) = g*(p) (since p is
on P, this also means that B(C*) > ®(n4). Combined
with the fact that g(n,) < ®(n,), yields B(C*) > g(ny) .
Therefore, BFS? satisfies B. [J

So as to concretely demonstrate the implications of Theo-
rem 2.2 consider how it applies to B, and f. when h is
admissible. For B, the first condition on ® simplifies to
®(n) < Bc(g(n) + h*(n)). For any node n on an optimal
path, f then satisfies this condition since

fe(n) g(n) + Be(h(n)) (1)
Be(g(n) + h(n)) 2)
Be(g(n) + h*(n)) 3)
where line 2 holds because (1+¢€)-(g(n) +h(n)) > g(n)+
(1 +€) - h(n). Since we also have that g(ny) = fc(ng) for
any goal ng, WA* (ie. BFS/<) satisfies B, by Theorem 2.2.

The following corollary then extends this result to a large
class of bounding functions:

<
<

Corollary 2.3 Given bounding function B such that for all
z,y, B(z +y) > B(z) +y, if 0p(n) = g(n) + B(h(n)),
then BFS®® with satisfy B.

This corollary holds because ®z(n,) = g(n,) for any goal
node ng4, and because the exact same derivation as was per-
formed for f, applies for ® 5. This means that for any bound-
ing function B such that for all z,y, B(x +y) > B(z) + v,



we immediately have an algorithm, specifically BES® 2, for
satisfying it. This condition can be viewed as requiring that
the maximum difference between C' and C* (ie. C — C*)
allowed by B cannot be smaller for problems with a large
optimal cost than for those with a small optimal cost.

Notice that since B(z) > « for all z, ®g(n) = g(n) +
B(h(n)) will intuitively increase the emphasis on h(n).
One exception is in the case of the additive bounding func-
tion B,(z) = x + v (and the resulting evaluation func-
tion ®p_), for which nodes will be ordered in OPEN in the
same way as in A*. To see this, consider any two nodes
ny and no such that ®p (n1) > ®p_ (n2). This means
that g(n1) + h(n1) + v = g(n2) + h(nz2) + 7, and so
fn) +7 < fng) + 5 where f(n) = g(n) + h(n) is
the A* evaluation function. This means that f(n1) > f(n2).
As such, the search performed by BFS‘,{?,,7 will be identical
to A*, and so we need to allow for some other way to satisfy
B,,. This is done by the following corollary:

Corollary 2.4 Given bounding function B such that for all
x,y, Blx +y) > B(x) +y, if © is the function &(n) =
g(n) + D(n) where h is admissible and 0 < D(n) <
B(h(n)) for all n, then BFS® will satisfy B.

This corollary, which follows from an almost identical
derivation as Corollary 2.3, introduces a new function D
which must be bound by B. For example, consider the fol-
lowing possible D function:

D,(m = {

By Corollary 2.4 we can use D, to satisfy B, by construct-
ing the evaluation function ®'(n) = g(n) + D,(n). This
function will prioritize goal nodes, though in domains in
which the heuristic is correct for all nodes adjacent to a goal
node, BFS®’ will still be identical to an A* instance which
breaks ties in favour of nodes with a low h-cost . However,
in Section 4 we will consider other D functions which will
successfully trade-off speed for solution quality.

0 if n is a goal
h(n)+~ otherwise

2.4 Bounding in Iterative Deepening Search

Though best-first search remains popular, its memory re-
quirements often limit its effectiveness in large combinato-
rial domains. In these cases, Iterative Deepening Depth-First
Search has been shown to be an effective alternative due to
its lower memory requirements (Korf 1985). Below, we will
show that by using iterative deepening, we can also satisfy a
large class of bounding functions.

Iterative deepening depth-first search consists of a se-
quence of threshold-limited depth-first searches, where
some evaluation function ® is used to define the thresholds.
For the first iteration (ie. iteration 0), the threshold  is set
as ®(n;). For any other iteration j > 0, threshold ¢; is set as
the smallest ®-cost of all nodes that were generated but not
expanded during iteration j — 1. Iterations terminate when
either a goal is found or all nodes that satisfy the current
threshold have been expanded.

IDA* (Korf 1985) is a special case of this paradigm which
uses the A* evaluation function f(n) = g(n) + h(n) where

h is admissible. We will let ID® denote the more general
version of this algorithm in which any arbitrary evaluation
function ® is being used. For example, IDA* = ID/. Just as
for best-first search, we first identify sufficient conditions on
® so that ID? satisfies a given bounding function B. This is
done in the following theorem:

Theorem 2.5 Given a bounding function B, ID® will satisfy
B if the following conditions hold:

1. ¥ node n on an optimal path, ®(n) < B(g(n) + h*(n))
2. ¥ goal node ng, g(ng) < ®(ng)

Proof Assume that a goal node n, is found on iteration j
which uses threshold ¢;. This means that ®(ny) < t;. Let
P,,; denote some optimal solution path. As in the proof of
Theorem 2.2, we begin by guaranteeing the existence of a
node p that is on P, and for which ®(p) > ®(n,). To do
so, we must consider two cases. If j = 0, we can select p =
n; since ®(n;) = to > P(ny), and since n; is necessarily
on any optimal path. If 7 > 0, we will show by contradiction
that there exists a node p on P, for which ®(n) > t;, and
so ®(p) > ®(ngy) since ®(n,) < t;. To do so, assume that
for any n on Py, ®(n) < t;. However, at least one node
n’ on P,, must satisfy ®(n') > t;_; as otherwise P,
would have been found during iteration j — 1. This means
that t;_; < ®(n’) < t;, which contradicts the selection of
t; as the new threshold. Therefore, there is some node p on
P, such that ®(p) >t > ®(ny).

Having guaranteed the existence this node, the proof then
proceeds exactly as it did for Theorem 2.2 once a node p on
P, was found for which ®(p) > ®(n,). O

When comparing Theorems 2.2, we see that the same suffi-
cient conditions hold on ® for either BFS® or ID®. As such,
corollaries 2.3 and 2.4 can easily be extended to ID®. This
means that in practice, when we want to satisfy a bounding
function B, we simply need to find an evaluation function
& that satisfies the properties in these theorems and then de-
cide based on domain properties (such as state-space size, or
number of cycles) on whether to use BES® or ID®.

2.5 Bounding in Focal List Search

In recent years, focal list based search has been shown to be
an effective alternative to best-first search in domains with
non-uniform edge costs. In this section, we generalize this
class of algorithms so as to be able to satisfy any monotoni-
cally non-decreasing bounding function in such domains.

We begin by examining the first algorithm of this kind:
A’ (Pearl and Kim 1982). A} is similar to BFS, except it
replaces line 4 in Algorithm 1 with a two-step process. In the
first step, a data structure called the focal list is constructed
so as to contain the following subset of OPEN:

: !
FOCAL = {nlf(n) < (1+¢)- min  f(n')}
where f(n) = g(n) + h(n) is the A* evaluation function,
and h is admissible. This means that FOCAL contains all
nodes with an f-cost no more than a factor of (1+ ¢€) greater
than the node with the lowest f-cost. In the second step, a
node n is selected for expansion from FOCAL as follows:

n<arg min  hy(n)

n’€FOCAL



where ho is some secondary heuristic. Typically, ho will es-
timate the distance-to-go of a node, which can be understood
as estimating the length of the shortest path from the node
to the goal (in terms of number of actions), unlike & which
will estimates the cost of that path and is thus a cost-fo-go
heuristic (Thayer and Ruml 2011). When a distance-to-go
heuristic is not available, one can simply set ho = h (Pearl
and Kim 1982). Moreover, A} may use any policy for select-
ing nodes from FOCAL and still remain an e-admissible al-
gorithm (Ebendt and Drechsler 2009). Such is the approach
taken by algorithms such as EES (Thayer and Ruml 2011).

Now consider how the size of FOCAL changes with dif-
ferent values of e. When ¢ = 0, FOCAL will only contain
those nodes whose f-cost is equal with the node on OPEN
with the minimum f-cost. In these cases, ho is only used for
tie-breaking. However, if € is large, then FOCAL will con-
tain a larger set of nodes with a variety of f-costs, and thus
will be allowed to explore them more greedily according to
ho. For example, when € = oo, FOCAL = OPEN and
the search simply expands greedily according to hs.

A similar behaviour occurs in our generalization of A’ for
a particular monotonically non-decreasing bounding func-
tion B. For this generalization we define FOCAL as follows:

: I
FOCAL = {n|f(n) < B(  min__f(n'))}

where f(n) = g(n)+h(n) and h is admissible. This too will
result in larger focal lists as the bounding function allows
for more suboptimality. We will refer to a focal list based
algorithm which builds FOCAL in this way as FSEARCH?,
regardless of the policy it uses to select nodes from FOCAL
for expansion. In the following theorem, we show that this
algorithm also satisfies B:

Theorem 2.6 Given any monotonically non-decreasing
bounding function B, FSEARCHP? will satisfy B.

Proof Assume that FSEARCH? has expanded a goal node
ng, and consider the search immediately prior to the expan-
sion of n,. When n, is expanded, it is on FOCAL which
means that f(ny) < B(min, coprn f(n')). As Lemma 2.1
can easily be extended to apply to focal list based search, we
are guaranteed that there is a node p in OPEN such that
g9(p) = g*(p) and p is on an optimal path.

By definition, min, coprn f(n') < f(p) and so
B(min, copen f(n')) < B(f(p)) since B is monotoni-
cally non-decreasing. This means that f(n,) < B(f(p)).
Since g(p) = g*(p) and h is admissible, f(p) < g*(p) +
h*(p) = C*. Combined with the fact that f(ny) = g(n,)
this means that g(n,) < B(C*).O

Again, notice that this proof holds regardless of the policy
used to select nodes from FOCAL for expansion, and so we
can construct versions of A and EES so as to satisfy any
monotonically non-decreasing bounding function. We will
experiment with these in the additive setting in Section 4.3.

3 Evaluation Functions for 5,

As described in Section 2.3, unlike most bounding functions,
the evaluation function suggested by Corollary 2.3 (ie. )
will be ineffective when used for satisfying B (z) = = +

v. In this section, we use Corollary 2.4 to construct other
bounding functions to remedy this problem. This means that
we will construct evaluation functions of the type ®(n) =
g(n) + D(n) where 0 < D(n) < h(n) + . We consider
two possible cases: when we are given only an admissible
function h, and when we have both an admissible function
h. and an inadmissible function A;.

3.1 Using Admissible Heuristics

Assume that we are given an admissible function h for
search. The guiding principle which we will use for con-
structing evaluation functions so as to satisfy B, will be
to follow the example of the WA* evaluation function and
further emphasize the role of the heuristic. This is the idea
behind our next evaluation function, which penalizes nodes
with a high heuristic value by adding a term that is linear in
the heuristic. The key difference between the new function
and the WA* function f, is that in order to satisfy 5., this
penalty must be guaranteed to be no greater than ~. In this
end, we consider the following function:

hw)

hmaz

F'(n) = g(n) + h(n) +

where hq. 18 a constant such that for all n, h(n) < hpmas-
This condition on h,,,, guarantees that the corresponding
D-function, given by D(n) = h(n)+h(n)-v/hma. satisfies
the required relation that 0 < D(n) < h(n) + ~ for all n.

Also notice that this evaluation function is equivalent to
fe where € = /R4, This means that if A, is a loose
upper bound and we were using best-first search, then our al-
gorithm would be equivalent to a WA* search that is not us-
ing as high of a weight as it could. Using a tight upper bound
on h for hy,, is therefore crucial for achieving good perfor-
mance. Unfortunately, a tight upper bound on the heuristic
value of any state may not be immediately available without
extensive domain knowledge. Moreover, even such an up-
per bound may not be relevant for a given particular starting
state, as it may over-estimate the heuristic values that will
actually be seen during search. This leads us to consider the
following evaluation function:

Fy(n) = g(n) + h(n) + W |

where n; is the initial node. Intuitively, this function uses
h(n;) as a more instance relevant upper bound and penalizes
nodes according to how much heuristic progress has been
made, where progress is measured by h(n)/h(n;).

Notice that if h(n;) is the largest heuristic value seen
during the search, then the ‘min’ can be removed from
F., which then becomes equivalent to f. in which ¢ =
(1 4+ ~v/h(n;)). In general, the ‘min’ cannot be omitted as
it is necessary for the additive bound, making it the crucial
difference between F, and f.. However, omitting the ‘min’
gives us insight into what to expect from F’, and F. Specif-
ically, since F, corresponds to f. with € = (1 + v/h(n;))
and F” corresponds to f! with e’ = —&—7/ Nimaz ), We expect
that when comparing the two, BES*~ will be greedler (and
therefore usually faster) since h(n;) < hpmaz-



We verified this with experiments on the 15-puzzle using
the 7-8 additive pattern database heuristic (Felner, Hanan,
and Korf 2011). For every ~ in the set 2, 4, 8, ..., 256, the
average number of nodes expanded by BFS?~ was less than
was expanded by BFS¥ ". As such, in all further experiments
with BFS and ID, we will use F, instead of F”.

3.2 Using Inadmissible Heuristics in BFS and ID

While Theorems 2.2 and 2.5 offer a general way to construct
evaluation functions for arbitrary bounding functions, an al-
ternative is to come up with an inadmissible heuristic with
a bounded amount of inadmissibility. This is possible due to
the following corollary:

Corollary 3.1 Given a bounding function B such that for
all z,y, B(x +y) > B(x) +y, if ®(n) = g(n) + h(n
where 0 < h(n) < B(h*(n)) for all n, then BFS® and ID
with satisfy B.

This corollary, which follows from an almost identical proof
as was given for corollary 2.3, generalizes a theorem by Har-
ris (1974) which was specific to the case of additive bounds.

For most modern-day inadmissible heuristics, such as the
FF heuristic (Hoffmann and Nebel 2001) and the bootstrap
heuristic (Jabbari Arfaee, Zilles, and Holte 2011), there are
no known bounds on heuristic inadmissibility. However, we
can still employ an inadmissible heuristic h; in conjunction
with an admissible heuristic &, by forcing a limit on the
difference between the two. In the case of additive bounding,
this means that we will use the following function:

IL—h;(n) = g(n) + min(hy(n) + 7, hi(n))

Note, I L—h; stands for inadmissible limiting of h;. This
evaluation function allows us to exploit the inadmissible
heuristic as much as possible unless the difference between
h, and h; is too large. When they do disagree by too much
(ie. hi(n) > hg(n)—+-y) we cannot simply use h;(n) and still
be guaranteed to satisfy the bound. As such, we use the value
of hy(n) + v since this penalizes the node (by increasing its
evaluation) by as much as possible while still satisfying ..

4 Experiments

In this section, we demonstrate that the theory developed in
Section 2 and the evaluation functions developed in Section
3 can be used to construct algorithms that effectively trade-
off runtime and guaranteed solution quality. This is shown
for the additive bounding function B.,(z) = x+ for arange
of « values. Note, we do not compare against e-admissible
algorithms that do not have an anytime component for satis-
fying a given additive bound ~y. This is because it is not clear
how to parameterize these algorithms so as to guarantee that
they satisfy B., without prior knowledge about the problem.
In the next section we will also show that this issue also ef-
fects AWA* when it is used for additive bounding, as the
algorithm’s effectiveness, relative to the use of an additive
BFS, will depend on how well it was parameterized.

4.1 Additive Best-First Search

In this section, we consider the use of BFS to satisfy B,,. In
particular, we will show that additive BFS will allow us to

Additive Suboptimality Bound / ~y
w 0 2 4 8 16 32 64 128 256

AWA* 1.5 3,013 2,850 2,180 606 117 99 99 99 99
AWA* 2.0 4,614 4,553 4222 2,330 343 53 53 53 53
AWA* 2.5 5248 5215 4,979 3,185 678 49 40 40 40

BES™ 3,732 2,460 1,175 403 117 66 44 33 30

Table 2: The average number of expanded nodes (in tens of
nodes) by Bounded AWA* and BFS?™ in the 15-puzzle.

effectively trade-off guaranteed solution suboptimality for
coverage. We begin by comparing BFS~ (where F, was
described in Section 3) against AWA* as used for additive
bounding (described in 2.2). We then show that additive BFS
can also be used effectively for automated planning.

Comparing BFS™ and AWA* To compare BFS>
against AWA* for additive bounding, we ran the two meth-
ods on the 100 15-puzzle problems given by Korf (1985)
with different additive suboptimality bounds. The results of
this experiment are shown in Table 2, which shows the av-
erage number of node expansions needed (in tens of nodes)
to satisfy the desired bound. For every bound, the algorithm
that expanded the fewest nodes is marked in bold. AWA*
was tested with several different weights (w) since it is not
obvious how to parameterize it for a specific .

The table shows that BFS™™ exhibits the desired tradeoff
of suboptimality and time as it expands fewer nodes as the
suboptimality bound is loosened (recall that BFS*™ is equiv-
alent to A* when v = 0). The general trend when using
AWA* set with a particular weight is that it works well over
some range of ~y values, but no single weight gets strong per-
formance everywhere. This is unlike BFS™ which exhibits
strong performance over all tested values of v. BFS™ also
has the additional advantage over AWA™ in that it does not
need to maintain two separate open lists (the second being
used to compute the lower bound on C*). This overhead
meant that even in the cases in which AWA* expanded fewer
nodes, it still had a longer runtime than BF S .

In conclusion, running AWA* with an additive bound suf-
fers from two issues: it is unclear as to how to initially select
a weight for a particular bound, and the computational ex-
pense of maintaining two open lists. As weight selection will
be even more difficult in an automated planner (since less is
known about the domains), we restrict our experiments in
planning domains to the additive BFS algorithms.

Additive BFS for Planning We will now show that ad-
ditive BFS algorithms can also be effective in automated
planners. For these experiments, we implemented F, and
inadmissibility limiting in the Fast Downward (Helmert
2006) framework. The admissible heuristic used is LM-Cut
(Helmert and Domshlak 2009), while the inadmissible FF
heuristic (Hoffmann and Nebel 2001) is used when using
inadmissibility limiting. On each problem, configurations
were given a 30 minute time and 4 GB memory limit when
running on a machine with two 2.19 GHz AMD Opteron 248
processors. For the test suite, we used the 280 problems from
the optimal track of IPC 2011 with action costs ignored. This



Additive Suboptimality Bound / y
0O 1 2 5 10 25 50 100 500 1000

BFS™ 132 145 148 163 175 191 204 216 218 218
BESTL—FF NA 142 146 157 172 199 199 199 199 199
P-BFS'E—FF NA 142 146 159 175 213 214 214 214 214

Table 3: The coverage of additive BFS algorithms in plan-
ning domains.

means that all tasks are treated as unit cost tasks. This was
done so as to determine if BFS shows similar behaviour in
the additive setting as it does for e-admissible search in the
situations in which it is known to be most effective. Typi-
cally, non-unit cost tasks are best handled by focal list based
approaches (Thayer and Ruml 2011), as will be verified in
the additive setting in Section 4.3.

Let us first consider the coverage of BFS™ on these plan-
ning domains, which is shown in the first row of Table
3. The table shows that this algorithm exhibits the desired
behaviour: as suboptimality is allowed to increase, so too
does the coverage. This is consistent with the behaviour of
WA*, which also benefits from the additional greediness al-
lowed with a looser bound. The second row of Table 3 then
shows the performance when the inadmissibility of the FF
heuristic is limited using LM-Cut. Again we see that as the
amount of suboptimality is increased, so too does the cov-
erage. However, the coverage generally lags behind that of
BFS’~. Subsequent analysis showed that this was partially
caused by the overhead of calculating two heuristic values
for each node. To combat this effect, we used a pathmax-
like technique (Mero 1984) with which the LM-cut heuris-
tic can be computed less frequently. To do so, notice that
for any node n, h*(n’) > h*(n) — ¢(n,n) where n’ is a
child of n. Therefore, for any admissible h, and inadmissi-
ble h;, if h;(n') < hy(n) — ¢(n,n) + v, we can infer that
hi(n") < h*(n’)4-y without calculating h,(n’) by Corollary
2.4, We can similarly avoid calculating h,(n'") for any suc-
cessor n’ of n for which h;(n”) < hy(n”) — Cy, v where
C' . 18 the cost of the path from n to n”.

The coverage seen when this technique is added to
BFS/L—FF is shown in the third row of Table 3 (denoted
as P-BFSL—FF) The pathmax technique clearly offers sig-
nificant gains, and now inadmissibility limiting is equal or
better than BFS™ for 10 < 7y < 100. For low values of 7,
P-BFS!/L—FF guffers because the inadmissible heuristic is
limited too often. To illustrate this effect, consider what hap-
pens when the inadmissible heuristic is always limited. This
means that min(h,(c) + v, hi(n)) = hq(n) + v for all n.
When this happens, IL-FF degenerates to g(n) 4+ hq(n) 47,
which, as discussed in Section 2.3 will result in a search
that is identical to A*. As -y gets smaller, the frequency with
which h; is limited increases and so we approach this case.

When v gets large enough, the inadmissible heuristic will
never be limited and IL-FF degenerates to g(n) + h; g:n) We
can see this happening in Table 3, as P-BFS/L—FF" stops
increasing in coverage at v = 50. We confirmed this as the
cause by using the FF heuristic without limiting, in which
case BFS solves 218 problems. This small discrepancy in
coverage is caused by the overhead of using LM-Cut.

Nodes Generated
=
o

10 20 30 40 50
Additive Suboptimality Bound/y

Figure 1: Additive BFS in the 15-blocks world.

Though P-BFSZ—FF has a lower coverage than BFS™™
for low and high values of 7, it still sits on the Pareto-optimal
front when comparing these two algorithms, and it does
show that we can use inadmissible heuristics in BFS and still
have guaranteed bounds. We will see similar results below
when evaluating additive iterative deepening algorithms.

4.2 Additive Iterative Deepening Search

This paradigm is typically used on large combinatorial
state-spaces in which the memory requirements of best-first
search can limit its effectiveness. We thus test in two such
domains, the 24-puzzle and 15-blocks world, and see sim-
ilar behaviour as with the additive BFS algorithms. In the
24-puzzle, the admissible heuristic used is the 6-6-6-6 addi-
tive heuristic developed by Korf and Felner (2002). In the
15-blocks world problem, the admissible heuristic is given
by the number of out-of-place blocks. In both domains, the
inadmissible heuristic used for inadmissibility limiting is the
bootstrap learned heuristic (Jabbari Arfaee, Zilles, and Holte
2011). This is a machine learned heuristic that is constructed
in an offline training phase. Due to its machine learned na-
ture, there are no known bounds on its inadmissibility.

The results for the blocks world experiment is shown
in Figure 1 (notice the log scale on the vertical axis), in
which IL—BST denotes the inadmissibility limiting eval-
uation function when using the bootstrap learning heuris-
tic. The general trend for ID™ and ID/#~55T is that they
both improve their runtime as the bound increases, though
ID! £~ BST stops improving when the inadmissible heuristic
is no longer ever limited. This happens at v = 9 in this do-
main due to the relatively high accuracy of the admissible
heuristic. Because ID®> can continue to become greedy on
hq, it is able to surpass the performance of ID!£~B5T for
~ > 20. Similar behaviour is seen in the 24-puzzle (details
omitted due to space constraints) in which the performance
of ID¥> stops improving at oy = 25, which is the same point
at which ID> becomes the faster algorithm. However, aside
from small values of v in which the inadmissible heuristic is
limited too often, /L—BST outperforms F’, for an interme-
diate  range. This means that just as with BFS, the theory
in Section 2 led to the successful construction of additive
iterative deepening algorithms.



4.3 Additive Focal List Search

Focal list based search has been shown to be more effective
than BFS in domains with non-uniform action costs. In this
section, we will demonstrate that the same is true for the ad-
ditive versions of these algorithms. We begin by considering
the additive version of A¥. As described by Theorem 2.6, the
suboptimality of A¥ can be adjusted by changing the criteria
for including a node on the OPEN list to the following:
. I
FOCAL = {n|f(n) <  min f(n)+7}

Once that is done, whatever heuristic was to be used to select
from FOCAL in A’ can still be used in the additive version
while still satisfying the bound.

Explicit Estimation Search (EES) is a newer focal list
based algorithm that has been shown to outperform A} in
many domains (Thayer and Ruml 2011). It uses a more so-
phisticated policy for selecting nodes from FOCAL for ex-
pansion. We will not describe this policy further here (see
(Thayer and Ruml 2011) for details), except to mention
that it can also be changed into an additively bounded al-
gorithm by changing the way that FOCAL is defined. This
additive version of EES (referred to as FSEARCH®~-EES
since it is an instance of FSEARCH?”~ which selects nodes
from FOCAL according to the EES policy) was then tested
against BFSY™~ and the additive version of A’ (referred to as
FSEARCH?+-A?) on a variant of the 15-puzzle in which the
cost of moving a tile is given by the inverse of the tile’s face
value. The admissible heuristic used is a cost-based version
of Manhattan distance, while standard Manhattan distance is
used as the distance-to-go heuristic.

Figure 2 shows the performance of these three algorithms
on this domain. Notice that with the introduction of ac-
tion costs, BFS®> is not exchanging guaranteed subopti-
mality for speed and it is much weaker than the focal list
based algorithms. In addition, we see that FSEARCH?~-
EES outperforms FSEARCH?>-A* for low values of -,
while FSEARCH?>-A* shows a slight advantage for large
. These results, including the poor performance of BES in
this domain, are consistent with those seen when using the
e-admissible versions of these algorithms in this domain. We
also experimented in the dynamic robot navigation and the
heavy vacuum domains, in which FSEARCHZ~-EES sub-
stantially outperforms FSEARCHB~-A*, just as EES out-
performs A} when using e-admissible bounding (Thayer
and Ruml 2011). That is, these originally e-admissible algo-
rithms have retained their relative strengths and weaknesses
when modified so as to satisfy a different bounding function.

5 Related Work

Dechter and Pearl (1985) previously provided bounds on the
cost of a solution found when using a best-first search guided
by alternative evaluation functions. Further generalizations
were considered by Farreny (1999) who also looked at the
use of alternative focal list definitions in focal list based al-
gorithms. The goal of our paper can be seen as the inverse
of these papers in that the works of Dechter and Pearl, and
by Farreny, attempt to determine the suboptimality of solu-
tions found by a given algorithm. In contrast, our goal is to
construct algorithms for a given bounding paradigm.

10
107 /
el
3 .
© Ol
510% el
c Teal
[0} Tl
S e,
&10% T
-8 'I....
Z el
4 [ «-=o--- FSEARCHB-EES IS TTTCTPP
10 A . :
—=— BFsf, .
FSEARCH®~-A,
3|
10
0 50

10 20 30 4
Additive Suboptimality Bound/ y

Figure 2: Additive focal list based search in the inverse 15-
puzzle.

An alternative form of bounding was also investigated by
Stern, Puzis, and Felner (2011). In this paradigm, the cost of
any solution found must be no larger than some given con-
stant K, regardless of what the optimal solution cost is. This
paradigm fits into our functional view of bounding, specif-
ically as Bx(z) = K when K > C*. Our theory does
not offer an immediate way to construct BES algorithms for
this paradigm since it is not true that Vx,y, Bk (z + y) >
By (z) +y. However, it has been shown that focal list based
algorithms of the type suggested by Theorem 2.6 are effec-
tive for this bounding paradigm (Thayer et al. 2012).

Additive bounding has previously been considered by
Harris (1974) who showed that if A* was used with a heuris-
tic h for which h(n) < h*(n)+- for all nodes n, then the so-
lution found will have a cost no more than C* 4. This con-
dition was generalized in Section 3.2. More recently, it was
shown that a particular termination criteria induced an addi-
tive bound when using bi-directional search (Rice and Tso-
tras 2012). We consider generalizing bi-directional search so
as to satisfy other bounding functions as future work.

6 Conclusion

In this paper, we have generalized the notion of a subopti-
mality bound using a functional definition that allows for the
use of alternate suboptimality measures. We then developed
theory which showed that four different search frameworks
— anytime, best-first search, iterative deepening, and focal
list based algorithms — could be modified so as to satisfy
a large set of suboptimality bounds. This allows a system
designer to not only measure and bound suboptimality as
they see fit, but to then satisfy that bound while selecting the
most appropriate framework for their particular domain. We
then showed that the theory suggests practical algorithms by
using it to construct algorithms with additive bounds which
efficiently trade-off suboptimality for runtime.

7 Acknowledgments

We would like to thank Jonathan Schaeffer and Ariel Felner
for their advice on this paper. This research was supported
by GRAND.



References

Dechter, R., and Pearl, J. 1985. Generalized Best-First
Search Strategies and the Optimality of A*. J ACM
32(3):505-536.

Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269-271.

Ebendt, R., and Drechsler, R. 2009. Weighted A>k search
- unifying view and application. Artificial Intelligence
173(14):1310-1342.

Farreny, H. 1999. Completeness and Admissibility for Gen-
eral Heuristic Search Algorithms-A Theoretical Study: Ba-
sic Concepts and Proofs. J. Heuristics 5(3):353-376.

Felner, A.; Hanan, S.; and Korf, R. E. 2011. Additive Pattern
Database Heuristics. CoRR abs/1107.0050.

Felner, A. 2011. Position Paper: Dijkstra’s Algorithm ver-
sus Uniform Cost Search or a Case Against Dijkstra’s Algo-
rithm. In SOCS.

Hansen, E. A., and Zhou, R. 2007. Anytime Heuristic
Search. JAIR 28:267-297.

Harris, L. R. 1974. The Heuristic Search under Conditions
of Error. Artificial Intelligence 5(3):217-234.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. [EEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100-107.

Helmert, M., and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
ICAPS.

Helmert, M., and Roger, G. 2011. Fast Downward Stone
Soup: A Baseline for Building Planner Portfolios. In ICAPS-
2011 Workshop on Planning and Learning, 28-35.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26:191-246.

Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search. JAIR
14:253-302.

Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artificial Intel-
ligence 175(16-17):2075-2098.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134:9-22.

Korf, R. E. 1985. Depth-First Iterative-Deepening: An
Optimal Admissible Tree Search. Artificial Intelligence
27(1):97-109.

Mero, L. 1984. A Heuristic Search Algorithm with Modifi-
able Estimate. Artificial Intelligence 23:13-27.

Pearl, J., and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Trans. on Pattern Recognition and Ma-
chine Intelligence 4(4):392-399.

Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193-204.

Rice, M. N.,, and Tsotras, V. J. 2012. Bidirectional A*
Search with Additive Approximation Bounds. In SOCS.

Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR 39:127-1717.

Stern, R. T.; Puzis, R.; and Felner, A. 2011. Potential Search:
A Bounded-Cost Search Algorithm. In ICAPS.

Thayer, J. T., and Ruml, W. 2008. Faster than Weighted A*:
An Optimistic Approach to Bounded Suboptimal Search. In
ICAPS, 355-362.

Thayer, J. T., and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In IJCAI, 674-679.

Thayer, J. T.; Stern, R.; Felner, A.; and Ruml, W. 2012.
Faster Bounded-Cost Search Using Inadmissible Estimates.
In ICAPS.



