
Inconsistent Heuristics in Theory and Practice

Ariel Felner FELNER@BGU.AC.IL
Department of Information Systems Engineering,
Ben-Gurion University of the Negev
Beer-Sheva, Israel, 85104
Uzi Zahavi ZAHAVIU @BIU .AC.IL
Department of Computer Science
Bar-Ilan University
Ramat-Gan, Israel, 52900
Robert Holte
Jonathan Schaeffer
Nathan Sturtevant
Zhifu Zhang {HOLTE,JONATHAN,NATHANST,ZHANG}@CS.UALBERTA .CA

Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2E8

Abstract

In the field of heuristic search it is usually assumed that admissible heuristics are consistent,
implying that consistency is a desirable attribute. The term “inconsistent heuristic” has, at times,
been portrayed negatively, as something to be avoided. Partof this is historical: early research
discovered that inconsistency can lead to poor performancefor A* (nodes might be re-expanded
many times). However, the issue has never been fully investigated, and was not re-considered after
the invention of IDA*.

This paper shows that many of the preconceived notions aboutinconsistent heuristics are out-
dated. The worst-case exponential time of inconsistent heuristics is shown to only occur on con-
trived graphs with edge weights that are exponential in the size of the graph. Furthermore, the paper
shows that rather than being something to be avoided, inconsistent heuristics often add a diversity
of heuristic values into a search which can lead to a reduction in the number of node expansions.
Inconsistent heuristics are easy to create, contrary to thecommon perception in the AI literature. To
demonstrate this, a number of methods for achieving effective inconsistent heuristics are presented.

Pathmax is a way of propagating inconsistent heuristic values in the search from parent to chil-
dren. This technique is generalized into bidirectional pathmax (BPMX) which propagates values
from a parent to a child node, and vice versa. BPMX can be integrated into IDA* and A*. When
inconsistent heuristics are used with BPMX, experimental results show a large reduction in the
search effort required by IDA*. Positive results are also presented for A* searches.

Keywords: Heuristic search, admissible heuristics, inconsistent heuristics, A*, IDA*

1. Introduction and overview

Heuristic search algorithms such as A* [15] and IDA* [22] areguided by the cost functionf(n) =
g(n) + h(n), whereg(n) is the cost of the current path from the start node to noden andh(n) is a

1

heuristic function estimating the cost fromn to a goal node. Ifh(n) is admissible(i.e., is always a
lower bound) these algorithms are guaranteed to find optimalpaths.

The A* algorithm is guaranteed to return an optimal solutiononly if an admissible heuristic is
used. There is no requirement that the heuristic beconsistent.1 It is usually assumed that admissible
heuristics are consistent. In their popular AI textbookArtificial Intelligence: A Modern Approach,
Russell and Norvig write that “one has to work quite hard to concoct heuristics that are admissible
but not consistent” [38]. Many researchers work under the assumption that “almost all admissible
heuristics are consistent” [25]. Some algorithms require that the heuristic be consistent (such as
Frontier A* [30], which searches without the closed list).2 The term “inconsistent heuristic” has,
at times, been portrayed negatively, as something that should be avoided. Part of this is historical:
early research discovered that inconsistency can lead to poor performance for A*. However, the
issue of inconsistent heuristics has never been fully investigated or re-considered after the invention
of IDA*. This paper argues that these perceptions about inconsistent heuristics are wrong. We show
that inconsistent heuristics have many benefits. Further, they can be used in practice for many search
domains. We observe that many recently developed heuristics are inconsistent.

A known problem with inconsistent heuristics is that they may cause algorithms like A* to
find shorter paths to nodes that were previously expanded andinserted into the closed list. If this
happens, then these nodes must be moved back to the open list,where they might be chosen for
expansion again. This phenomenon is known asnode re-expansion. A* with an inconsistent heuris-
tic may perform an exponential number of node re-expansions[32]. We present insights into this
phenomenon, showing that the exponential time behavior only appears in contrived graphs where
edge weights and heuristic values grow exponentially with the graph size. For IDA*, it is important
to note that node re-expansion is inevitable due to the algorithm’s depth-first search. The use of an
inconsistent heuristic does not exacerbate this. Because no history of previous searches is main-
tained, each separate path to the node will be examined by IDA* whether the heuristic is consistent
or not.

Inconsistent heuristics often add a diversity of heuristicvalues into a search. We show that
these values can be used to escape heuristic depressions (regions of the search space with low
heuristic values), and can lead to a large reduction in the search effort. Part of this is achieved by
our generalization ofpathmaxinto bidirectional pathmax. The idea ofpathmaxwas introduced by
Mero [34] as a method for propagating inconsistent values inthe search from a parent node to its
children. Pathmax causes thef -values of nodes to bemonotonic non-decreasingalong any path
in the search tree. The pathmax idea for undirected state spaces is generalized intobidirectional
pathmax(BPMX). BPMX propagates values in a similar manner to pathmax, but does this in both
directions (parent to child, and child to parent). BPMX turns out to be more effective than pathmax
in practice. It can easily be integrated into IDA* and, with slightly more effort, into A*. Using
BPMX, the propagation of inconsistent values allows a search to escape from heuristic depressions
more quickly.

Trivially, one can create an inconsistent heuristics by taking a consistent heuristic and degrading
some of its values. The resulting heuristic will be less informed. Contrary to the perception in the

1. A heuristic isconsistentif for every two statesx andy, h(x) ≤ c(x, y) + h(y) wherec(x, y) is the cost of the
shortest path betweenx andy. Derivations and definitions ofconsistentandinconsistentheuristics are provided in
Section 3.

2. The breadth-first heuristic search algorithm [49], a competitor to Frontier A*, does not have this requirement and
works with inconsistent heuristics too.

2

literature, informed inconsistent heuristics are easy to create. General guidelines as well as a number
of simple methods for creating effective inconsistent heuristics are provided. The characteristics of
inconsistent heuristics are analyzed to provide insights into how to effectively use them to further
reduce the search effort.

Finally, experimental results show that using inconsistent heuristics with BPMX yields a signif-
icant reduction in the search effort required for many IDA*-and A*-based search applications. The
application domains used are the sliding-tile puzzle, Pancake problem, Rubik’s cube, TopSpin and
pathfinding in maps.

The paper is organized as follows. In Section 2 we provide background material. Section 3
defines consistent and inconsistent heuristics. Section 4 presents a study of the behavior of A*
with inconsistent heuristics. BPMX is introduced in Section 5 and its attributes when used with
inconsistent heuristics are studied. Methods for creatinginconsistent heuristics are discussed in
Section 6. Extensive experimental results for IDA* and for A* are provided in Sections 7 and 8,
respectively. Finally we provide our conclusions in Section 9.

Portions of this work have been previously published [14, 21, 44, 45, 46, 47]. This paper sum-
marizes this line of work and ties together all the results. In addition new experimental results are
provided.

2. Terminology and background

This section presents terminology and background materialused for this research.

2.1 Terminology

Throughout the paper the following terminology is used. Astate spaceis a graph whose vertices are
calledstates. The execution of a search algorithm (e.g., A* and IDA*) froman initial state creates
a search graph. A search treespans that graph according to the progress of the search algorithm.
The termnodeis used throughout this paper to refer to the nodes of the search tree. Each node in
the search tree corresponds to some state in the state space.The search tree may contain nodes that
correspond to the same state (via different paths). These are calledduplicates.

The fundamental operation in a search algorithm is toexpand a node(i.e., to compute orgener-
ate the node’s successors in the search tree). We assume that each node expansion takes the same
amount of time. This allows us to measure the time complexityof the algorithms in terms of the to-
tal number of node expansions performed by the algorithm in solving a given problem.3 The space
complexity of a search algorithm is measured in terms of the number of nodes that need to be stored
simultaneously.

A second measure of interest is the number of unique states that are expanded at least once
during the search. The phrasenumber of distinct expanded statesrefers to this measure and is
denoted byN .

The termc(x, y) is used to denote the cost of a shortest path fromx to y. In addition,h(x)
denotes an admissible heuristic fromx to a goal whileh∗(x) denotes the cost of the shortest path
from x to a goal (= c(x, goal)).

3. In experiments with IDA*, it is common to report the numberof generated nodes instead of the number of node
expansions. We follow this practice in our IDA* experiments.

3

2.2 Search algorithms

The A* algorithm is a best-first search algorithm [15]. It keeps anopen listof nodes (denoted
hereafter asOPEN), usually implemented as a priority queue, which is initialized with the start state
node. At each expansion step of the algorithm, a node of minimal cost is extracted from OPEN and
its children are generated and added to OPEN. The expanded node is inserted into theclosed list
(denoted hereafter asCLOSED). The algorithm halts when a goal node is chosen for expansion.

A* employs aduplicate detectionmechanism and stores at most one node for any given state.
Before a node is added to OPEN it is first matched against both OPEN and CLOSED. If a duplicate
node (node with the same state) is found in OPEN then only the node with the smallerg-value
is kept in OPEN. If the duplicate node is found in CLOSED with asmaller or equalg-value, the
newly generated node is ignored. If the node is found in CLOSED with a largerg-value, the copy
in CLOSED is removed and the copy with the smallerg-value is added to OPEN.

A* uses the cost functionf(n) = g(n) + h(n), whereg(n) is the cost of reaching noden
from the start node (via the bestknownpath) andh(n) is an estimate of the remaining distance
from n to the goal. Ifh(n) is admissible(i.e., its estimate is always a lower bound on the actual
distance) then A* is guaranteed to return a shortest path solution if one exists [6]. Furthermore, with
a consistent heuristic, A* has been proven to be admissible,complete, and optimally effective [6].
With an inconsistent heuristic, A* is optimal with respect to the number of distinct states expanded,
N , but may re-expand nodes many times. A* requires memory linear in the number of distinct
states expanded.

IDA* is an iterative-deepening version of A* [22]. It performs a series of depth-first searches,
each to an increasing solution-cost thresholdT . T is initially set toh(s), wheres is the start node.
If the goal is found within the threshold, the search ends successfully. Otherwise, IDA* proceeds to
the next iteration by increasingT to the minimumf -value that exceededT in the previous iteration.
The worst-case time complexity of IDA*, even when the given heuristic is consistent, isO(N2) on
trees,O(22N) on directed acyclic graphs [31], andΩ(N !) on cyclic or undirected graphs. The space
complexity of IDA* isO(bd) whereb is the maximum branching factor andd is the maximum depth
of the search (number of edges traversed from the root to the goal). Despite these worst-case time
bounds, in practice, IDA* is effectively used to solve many combinatorial problems, especially ones
whose state spaces do not have many small cycles. Due to its modest space complexity, IDA* can
solve problems for which A* exhausts available memory before arriving at a solution.

2.3 Applications

We now provide an overview of the application domains used inthis paper.

2.3.1 RUBIK ’ S CUBE

Rubik’s cube was invented in 1974 by Ernő Rubik of Hungary. The standard version consists of
a 3 × 3 × 3 cube (Figure 1), with different colored stickers on each of the exposed squares of the
sub-cubes, orcubies. There are 20 movable cubies and six stable cubies in the center of each face.
The movable cubies can be divided into eight corner cubies, with three faces each, and twelve edge
cubies, with two faces each. Corner cubies can only move among corner positions, and edge cubies
can only move among edge positions. There are about4×1019 different reachable states. In the goal
state, all the squares on each side of the cube are the same color. Pruning redundant moves results

4

Figure 1:3× 3× 3 Rubik’s cube

in a search tree with an asymptotic branching factor of about13.34847 [24].4 Pattern databases
(PDBs, see below) are an effective and commonly-used heuristic this domain.

2.3.2 TOPSPIN PUZZLE

The (n,r)-TopSpin puzzle hasn tokens arranged in a ring (see Figure 2). The ring of tokens can
be shifted cyclically clockwise or counterclockwise. The tokens pass through thereverse circle
which is fixed in the top of the ring. At any given timer tokens are located inside the reverse circle.
These tokens can be reversed (rotated 180 degrees). The taskis to rearrange the puzzle such that
the tokens are sorted in increasing order. The (20,4) version of the puzzle is shown in Figure 2 in
its goal position where tokens 19, 20, 1 and 2 are in the reverse circle and can be reversed. We used
the classic encoding of this puzzle which hasN operators, one for each clockwise circular shift of
length0 . . . N−1 of the entire ring followed by a reversal/rotation for the tokens in the reverse circle
[4]. Each operator has a cost of one. Note that there aren! different ways to permute the tokens.
However, since the puzzle is cyclic, only the relative location of the different tokens matters, and
thus there are only(n− 1)! unique states. PDBs are an effective heuristic for this puzzle.

 circle
Reverse

20

9

18

17

16

15

14

13
12

11 10

20 1 2

7

19
3

4

5

6

8

Figure 2: TopSpin (20,4) puzzle

2.3.3 THE SLIDING -TILE PUZZLES

One of the classic examples of a single-agent path-finding problem in the AI literature is the sliding-
tile puzzle. Three common versions of this puzzle are the3 × 3 8-puzzle, the4 × 4 15-puzzle and
the 5 × 5 24-puzzle. They consist of a square frame containing a set ofnumbered square tiles,

4. We adopt the same setting first used by Korf [24] where both 90-degree and 180-degree rotation of a face count as a
legal move.

5

and an empty position called the blank. The legal operators are to slide any tile that is horizontally
or vertically adjacent to the blank into the blank’s position. The objective is to rearrange the tiles
from some random initial solvable configuration into a particular desired goal configuration. The
state space grows exponentially in size as the number of tiles increases, and it has been shown that
finding optimal solutions to the sliding-tile puzzle is NP-complete [37]. The 8-puzzle contains9!/2
(181,440) reachable states, the 15-puzzle contains about1013 reachable states, and the 24-puzzle
contains almost1025 states. The goal states of these puzzles are shown in Figure 3.

15

20 21

16

2

7

12 13

8

3

22

4

9

14

2423

5 6

1

10 11

191817

14 15

6

10 11

7

321

5

9

1312

8

4

876

3 4 5

1 2

Figure 3: The 8-, 15- and 24-puzzle goal states

The classic admissible heuristic function for the sliding-tile puzzles is called Manhattan Dis-
tance. It is computed by counting the number of grid units that each tile is displaced from its
goal position, and summing these values over all tiles, excluding the blank. PDBs provide the best
existing admissible heuristics for this problem.

2.3.4 THE PANCAKE PUZZLE

The pancake puzzle is inspired by a waiter navigating a busy restaurant with a stack ofn pan-
cakes [8]. The waiter wants to sort the pancakes ordered by size, to deliver the pancakes in a
pleasing visual presentation. Having only one free hand, the only available operation is to lift a top
portion of the stack and reverse it. In this domain, a state isa permutation of the values0...(n − 1).
A state hasn− 1 successors, with thekth successor formed by reversing the order of the firstk+1
elements of the permutation (0 < k ≤ n − 1). For example, ifn = 5 the successors of the goal
state< 0, 1, 2, 3, 4 > are< 1, 0, 2, 3, 4 >, < 2, 1, 0, 3, 4 >, < 3, 2, 1, 0, 4 > and< 4, 3, 2, 1, 0 >,
as shown in Figure 4. From any state it is possible to reach anyother permutation, so the size of the
state space isn!. In this domain, every operator is applicable to every state. Hence it has a constant
branching factor ofn−1. PDBs are a well-informed and commonly-used heuristic for this domain.5

2.3.5 PATHFINDING

A map is anm × n grid of passable areas and obstacles. There are eight possible movements
from a position—four cardinal moves and four diagonal moves—subject to obstacles and boundary
conditions. Cardinal moves have cost 1, and diagonal moves have cost

√
2. Figure 5 shows one

of the maps used in our experiments (a512 × 512 grid). The goal is, for instance, to move from
pointA to pointB in the fewest number of moves, traversing only the light area. In general, for this
application the best heuristic depends on properties of thedomain.

5. The best heuristic known for this puzzle is called thegap heuristic[16] and uses domain-dependent attributes.

6

pancake 4

pancake 3

pancake 2

pancake 1

pancake 0

pancake 1

pancake 2

pancake 0

pancake 3

pancake 4

pancake 4

pancake 0

pancake 1

pancake 2

pancake 3pancake 4

pancake 3

pancake 2

pancake 1

pancake 0

pancake 3

pancake 4

pancake 2

pancake 0

pancake 1

Figure 4: The 5-pancake puzzle

B

A

Figure 5: Sample game map

2.4 Pattern database heuristics

The efficiency of a single-agent search algorithm is largelydictated by the quality of the heuristic
used. An effective and commonly-used heuristic for most of the application domains used in this
paper are memory- or table-based heuristics. The largest body of work on these heuristics is on
pattern databases[5] (PDBs). PDBs are therefore used in most of our experimental studies, and the
purpose of this section is to give the background details. However, it is important to note that none of
this paper’s key ideas (inconsistency, BPMX, etc.) depend on the heuristic being a PDB; these ideas
apply to heuristics of all forms. PDB heuristics allow us to achieve state-of-the-art performance for
some of our application domains.

PDBs are built as follows.6 Thestate spaceof a permutation problem represents all the different
ways of placing a given set of objects into a given set of locations (i.e., all the possible states). A
subproblemis an abstraction of the original problem defined by only considering some of these
objects while treating the others as irrelevant (“don’t care”). A pattern(abstract state) is a specific

6. We give a definition of PDBs which is specific to permutationstate spaces, since these are used in this paper. How-
ever, PDBs can be built for a much wider set of state spaces andabstractions (e.g., planning domains [9] or other
combinatorial problems [10, 33]).

7

assignment of locations to the objects of the subproblem. Thepattern spaceor abstract spaceis the
set of all the different reachable patterns of a given abstract problem.

(distance to the goal pattern)

space

Abstract
space

Pattern Database

4

5

0

7

goal pattern entry

State

S
2

1p

p G

G

S1

2 p

Figure 6: States in the state space are mapped to patterns in the abstract space

Each state in the original state space isabstractedto a state in the pattern space by only con-
sidering the pattern objects, and ignoring the others. Thegoal patternis the abstraction of the goal
state. As illustrated in Figure 6, there is anedgebetween two different patternsp1 andp2 in the
pattern space if there exist two statess1 ands2 of the original problem such thatp1 is the abstraction
of s1, p2 is the abstraction ofs2, and there is an operator in the original problem space that connects
s1 to s2.

A pattern database(PDB) is a lookup table that stores the distance of each pattern to the goal
pattern in the pattern space. A PDB is built by running a breadth-first search7 backwards from the
goal pattern until the entire pattern space is spanned. A state s in the original space is mapped to
a patternp by ignoring all details in the state description that are notpreserved in the pattern. The
value stored in the PDB forp is a lower bound (and thus serves as an admissible heuristic)on the
distance ofs to the goal state in the original space since the pattern space is an abstraction of the
original space.

Pattern databaseshave proven to be a powerful technique for for finding effective lower bounds
for numerous combinatorial puzzle domains [24, 5, 26, 10, 11]. Furthermore, they have also proved
to be useful for other search problems (e.g., multiple sequence alignment [33, 48] and planning [9]).

2.4.1 PATTERN DATABASE EXAMPLE

PDBs can be built for the sliding-tile puzzles as illustrated in Figure 7. Assume that the subproblem
is defined to only include tiles 2, 3, 6 and 7; all the tiles are ignored except for 2, 3, 6 and 7. The
resulting{2-3-6-7}-PDB has an entry for each pattern containing the distance from that pattern to
the goal pattern (shown in Figure 7(d)). Figure 7(b,d) depicts the PDB lookup for estimating a
distance from a given state S (Figure 7(a)) to the goal (Figure 7(c)). State S is mapped to a 2-3-6-7
pattern by ignoring all the tiles other than 2, 3, 6 and 7 (Figure 7(b)). Then, this pattern’s distance

7. This description assumes all operators have the same cost. Uniform cost search should be used in cases where
operators have different costs.

8

to the goal pattern (Figure 7(d)) is looked up in the PDB. To bespecific, if the PDB is represented
as a 4-dimensional array,PDB[][][][], with the array indexes being the locations of tiles 2, 3, 6,
and 7, respectively, then the lookup for state S isPDB[8][12][13][14] (tile 2 is in location 8, tile 3 in
location 12, etc.).

(d) goal pattern

10

11 5

1

10

7

1 2 3

54

12 13 14 15

11

6

98

(a) state S (b) the PDB lookup

(c) goal state

6

2 3

7

6 73

1324

15

8

14

76

2

9

12

13

3

Figure 7: Example of regular PDB lookups

As another example, consider only the eight cubies of the yellow face in Rubik’s cube. A
“yellow face” PDB will store the distances for all configurations of the “yellow” cubies to their goal
location. These distances are admissible heuristics for the complete set of cubies.

2.4.2 ADDITIVE PDBS

The best existing method for optimally solving the sliding-tile puzzles usesdisjoint additive pattern
databases[10, 26]. The tiles are partitioned into disjoint sets, and aPDB is built for each set. An
x − y − z partitioning is a partition of the tiles into disjoint sets with cardinalitiesx, y andz. We
build a PDB for each set which stores the cost of moving the tiles in the pattern set from any given
arrangement to their goal positions. For each such PDB, moves of tiles in the other sets are not
counted. The important attribute is that each move of the puzzle changes the location ofone tile
only. Since for each set of pattern tiles we only count moves of the pattern tiles, and each move only
moves one tile, values from different disjoint PDBs can be added together and the results are still
admissible. Figure 8 presents the two7−8 partitionings for the 15-puzzle and the two6−6−6−6
partitionings for the 24-puzzle that were first used in the context of additive PDBs [10, 26].

3. Consistent and inconsistent heuristics

Admissibility is a desirable property for a heuristic sinceit guarantees that the solution returned
by A* and IDA* will be optimal. Another attribute for a heuristic is that it can beconsistent. An
admissible heuristich is consistent if, for every two statesx andy, if there is a path fromx to y,

9

6

��
��
��
��

��
��
��
����

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

66

667

8
7 8

6 6

6

Figure 8: Partitionings and reflections of the tile puzzles

then
h(x) ≤ c(x, y) + h(y) (1)

wherec(x, y) is the cost of the least-cost path fromx to y [15]. This is a kind of triangle inequality:
the estimated distance to the goal fromx cannot be reduced by moving to a different statey and
adding the estimate of the distance to the goal fromy to the cost of reachingy from x. Pearl [36]
showed that restrictingy to be a neighbor ofx produces an equivalent definition with an intuitive
interpretation: in moving from a state to its neighbor,h must not decrease more than the cost of
the edge that connects them. This means that thecost functionf(n) = g(n) + h(n) is always
non-decreasingalong any given path in the search graph. We call this themonotonicity8 of the cost
function f , which is guaranteed whenh is consistent. Note that consistency is a property of the
heuristich while monotonicity is a property of the cost functionf(n) = g(n) + h(n). In Section 5
we will show different methods for enforcing monotonicity and consistency.

If the graph is undirected then the cost of going fromx to y is the same as fromy to x. Since
the heuristic is consistent we also get that

h(y) ≤ c(y, x) + h(x). (2)

Merging equations 1 and 2 yields an alternative definition for consistent heuristics for undirected
state spaces:

|h(x)− h(y)| ≤ c(x, y). (3)

This inequality means that when moving from a parent to a child in a search tree, the heuristich
cannot increase or decrease more than the change ing.

3.1 Inconsistent heuristics

An admissible heuristich is inconsistentif for at least one pair of statesx andy,

h(x) > c(x, y) + h(y). (4)

If y is a successor ofx, thef -value will decrease when moving fromx to y. The cost function
f in this case is referred to as anon-monotoniccost function.

Similar to the reasoning above, for undirected graphs a heuristic is inconsistentif for at least
one pair of statesx andy

|h(x)− h(y)| > c(x, y). (5)

This means that the difference between the heuristic valuesof x andy is larger than the actual cost
of going fromx to y.

8. Pearl [36] used the termmonotonicityin a different sense.

10

8
1 2(c)(c)

1

(p)

1

5

5

2

Figure 9: Inconsistent heuristic

According to this definition there are two types of inconsistencies in undirected search graphs;
both are shown in Figure 9. As in all figures in the paper, the number inside a node is its admissible
h-value. An edge is generally labeled with its cost.

• Type 1: h decreases from parent to child.The parent nodep hasf(p) = g(p) + h(p) =
5 + 5 = 10. Since the heuristic is admissible, any path from the start node to the goal node
that passes throughp has a cost of at least 10. Since the edge fromp to c1 has a cost of 1,
f(c1) = g(c1) + h(c1) = 6 + 2 = 8. This is a lower bound on the total cost of reaching the
goal throughc1. This is weaker than the lower bound from the parent (which isvalid for all
its children). Thus the information provided by evaluatingc1 is “inconsistent” (in the sense
that they do not agree) with the information from its parentp. In this casef is non-monotonic
when moving fromp to c1.

• Type 2:h increases from parent to child.Nodec2 presents another possible case for incon-
sistency, although this case is only inconsistent because the graph is undirected. Here the
heuristic increased from 5 to 8 while the cost of the edge was only 1. The cost functionf
is still monotonic increasing fromp (f = 10) to c2 (f = 14). However the increase of the
h-value is larger than the increase of theg-value. Note that since the graph is undirected
there is also an edge fromc2 to p. Hence, logicallyp is also one of the children ofc2. In
this second occurrence ofp, thef -value will decrease from 14 to 12 and is non-monotonic.
Thus, the historical claim (e.g., of Pearl [36]) that consistency is equivalent to monotonicity
is technically correct.9

The difference between the two types of inconsistency is important because later we will show
that the pathmax propagation deals with Type 1 and corrects heuristics to be monotonic while our
new bidirectional pathmax (BPMX) described below also deals with Type 2 and can cause the
heuristic to be fully consistent. Note that the “good” behavior of consistent heuristics (e.g., that
they do not re-expand nodes) usually comes from the cost function f being monotonic.

11

(a)
0

53

11

4 1

6
(b)

(c) (goal)

Figure 10: Re-expanding of nodes by A*

3.2 Inconsistent heuristics in A* and in IDA*

Assume that a state can be reached from the start state by multiple paths, each with a possibly
different cost. Whenever a node is generated by A*, it is firstmatched against OPEN and CLOSED
and if a duplicate is found, the copy with the largerg-value is ignored. If a consistent heuristic is
used thenf is monotonic and all ancestors of a noden havef -valuesless than or equal tof(n).
Therefore, the first time a noden is expanded by A* (e.g., withf(n) = K) it always has the optimal
g-value among all possible paths from the start ton. Otherwise, one of the ancestors ofn along the
optimal path ton must be in OPEN, but itsf -value must be smaller thanK so it must have been
expanded prior ton. As a consequence, when a node is expanded and moved to CLOSEDit will
never be chosen for expansion again. By contrast, with inconsistent heuristics where thef -function
is non-monotonic, A* may re-expand nodes when they are reached via a lower cost path. A simple
example of this is shown in Figure 10. Nodesb andc will be generated when the start nodea is
expanded withf(b) = 1+6 = 7 andf(c) = 3+1 = 4. Next, nodec will be expanded, and the goal
is discovered with anf -value of 8. Sinceb has a lowerf -value, it will be expanded next, resulting in
a lower cost path toc. This operation is referred to as there-openingof nodes (c in our case), since
nodes from CLOSED are re-opened and moved back to OPEN. Now,c will be re-expandedwith a
lower g-cost, and a lower cost path of length 7 to the goal will be found. So, with A* the use of
inconsistent heuristics comes with a real risk of many more node expansions than with a consistent
heuristic. As the next section shows, this risk is not nearlyas great as was previously thought. In a
later section our experiments show that inconsistent heuristics can actually speed up an A* search.

IDA*, as a depth-first search (DFS) algorithm, does not perform duplicate detection.10 Using
IDA* on the state space in Figure 10, nodec will also be expanded twice (once for each of the paths)
whether the heuristic is consistent or not. Thus, the problem of re-expanding nodes already exists in
IDA*, and using inconsistent heuristics will not result in any additional performance degradation.

9. In practical applications it is a common practice (known as parent pruning) not to list the parent of a node as one of
its children. In such cases the heuristic can be inconsistent according to equation 5 but the correspondingf -function
is still monotonic. In practice, a full search tree where inconsistencies are only due to this second case (and the cost
functionf is always monotonic) is probably rather rare. Therefore, inthe reminder of this paper we will generally
assume that all inconsistent heuristics produce a cost function f that is non-monotonic.

10. In an advanced implementation of IDA* (as in any DFS) one can detect whether the current node already appeared
as one of the ancestors in the current branch of the tree. However, only a small portion of the possible duplicates can
be detected with this method when compared to algorithms that keep OPEN and CLOSED lists.

12

4. Worst-case behavior of A* with inconsistent heuristics

This section presents an analysis of the worst-case time complexity of A* when inconsistent heuris-
tics are used.

If the heuristic is admissible and consistent, A* is “optimal” in terms of the number of node
expansions ([36], p. 85). However, as just explained, if theheuristic is admissible but not consistent,
nodes can be re-opened and A* can do as many asO(2N) node expansions, whereN is the number
of distinct expanded states. This was proven by Martelli [32].

4.1 TheGi family of state spaces

23

13

7300

11 9 6
1

19 1 1

1

6

3

4

(n
5
)

(n
4
)

(n
3
)(n

2
)(n

1
)(n

0
)

Figure 11:G5 in Martelli’s family

Martelli defined a family of state spaces{Gi}, for all i ≥ 3, such thatGi containsi + 1
states and requires A* to doO(2i) node expansions to find the solution [32].G5 from Martelli’s
family is shown in Figure 11; the number inside a state is its heuristic value and the number beside
an edge is its cost. There are many inconsistencies in this graph. For example,c(n4, n3) = 1
but h(n4) − h(n3) = 6. The unique optimal path from the start (n5) to the goal (n0) has the
states in decreasing order of their index (n5, n4, ..., n0), butn4 has a large enough heuristic value
(f(n4) = 14) that it will not be expanded by A* until all possible paths tothe goal (withf < 14)
involving all the other states have been fully explored. Thus, whenn4 is expanded, nodesn3, n2

andn1 are re-opened and then expanded again. The sequence of node expansions until reaching the
goal, with thef -values shown inside the parentheses, is as follows:n5(23),n1(11),n2(12),n1(10),
n3(13), n1(9), n2(10), n1(8), n4(14), n1 (7), n2(8), n1(6), n3(9), n1(5), n2(6), n1(4). Note that
aftern4 is expanded the entire sequence of expansions that occurredprior to the expansion ofn4 is
repeated but this time all these nodes are examined via pathsthroughn4. Thus, the existence ofn4

in G5 essentially doubles the search effort required forG4. This property holds for eachni so the
total amount of work isO(2i). As we will show below, this worst-case behavior hinges on the state
space having the properties that the edge weights and heuristic values grow exponentially with the
number of states (as is clearly seen in the definition of Martelli’s state spaces).

13

4.2 Variants of A*

Martelli devised a variant of A*, called B, that improves upon A*’s worst-case time complexity
while maintaining admissibility [32]. Algorithm B maintains a global variableF that keeps track of
the maximumf -value of the nodes expanded thus far in the search. When choosing the next node
to expand, iffm, the minimumf -value in OPEN, satisfiesfm ≥ F , thenfm is chosen as in A*,
otherwise the node with minimumg-value among those withf < F is chosen. Because the value
of F can only change (increase) when a node is expanded for the first time, and no node will be
expanded more than once for a given value ofF , the worst-case time complexity of Algorithm B
is O(N2) node expansions. However, even with this improvement the worst-case scenario is still
poor, further reinforcing the impression that inconsistency is undesirable.

Bagchi and Mahanti proposed algorithm C, a variant of B, by changing the condition for the
special case fromfm < F to fm ≤ F and altering the tie-breaking rule to prefer smallerg-
values [1]. C’s worst-case time complexity is the same as B’s, O(N2).

4.3 New analysis

Although Martelli proved that the number of node expansionsA* performs may be exponential in
the number of distinct expanded states, this behavior has never been reported in real-world appli-
cations of A*. His family of worst-case state spaces have solution costs and heuristic values that
grow exponentially with the number of states. We now presenta new result that such exponential
growth in solution costs and heuristic values are necessaryconditions for A*’s worst-case behavior
to occur.

We assume all edge weights are non-negative integers (edge weights of zero are permitted). The
key quantity in our analysis is∆, defined to be the greatest common divisor of all the non-zeroedge
weights. The cost of every path from the start node to noden is a multiple of∆, and so too is the
difference in the costs of any two paths from the start node ton. Therefore, if during a search we
re-openn because a new path to it is found with a smaller cost than our currentg(n) value, we know
thatg(n) will be reduced by at least∆.

Theorem 1 If A* performsM > N node expansions then there must be a node with heuristic value
of at leastLB = ∆ ∗ ⌈(M −N)/N⌉.

Proof. If A* does M node expansions and there are onlyN distinct expanded states, then the
number of re-expansions isM − N . By the pigeon-hole principle there must be a node, sayK,
with at least⌈(M − N)/N⌉ re-expansions. Each re-expansion must decreaseg(K) by at least∆,
so after this process theg-value ofK is reduced by at leastLB = ∆ ∗ ⌈(M −N)/N⌉.

In Figure 12,S is the start node,K is any node that is re-expanded at least⌈(M −N)/N⌉ times
(as we have just seen, at least one such node must exist),L is the path that resulted from the first
expansion ofK, and the upper path toK (viaB) is the path that resulted from the last expansion of
K. Denote thef - andg-values along pathL asfL andgL, and thef - andg-values along the upper
path asflast andglast, respectively.

NodeB is any node on the upper path, excludingS, with the maximumflast value (that is, the
maximumflast value among any other node on the upper path). Nodes distinctfrom S andK must
exist along this path because if there were a direct edge fromS to K, thenK would be opened as
soon asS was expanded with ag-value smaller thangL(K). HenceK would not be expanded via
L, leading to a contradiction. NodeB must be one of these intermediate nodes — it cannot beS

14

L

(S)

(B)

(K)

gL(K)

Figure 12: First and last explored path

by definition and it cannot beK because ifflast(K) was the largestflast value, the entire upper
path would be expanded beforeK would be expanded viaL, again a contradiction. Hence,B is an
intermediate node betweenS andK.

h(B) must be large enough to makeflast(B) ≥ fL(K) (becauseK is first expanded viaL).
We will now use the following facts to show thath(B) must be at leastLB:

flast(B) = glast(B) + h(B) (6)

flast(B) ≥ fL(K) (7)

fL(K) = gL(K) + h(K) (8)

glast(B) ≤ glast(K) (9)

LB ≤ gL(K)− glast(K). (10)

So,

h(B) = flast(B)− glast(B), by Fact 6

≥ fL(K)− glast(B), by Fact 7

= gL(K) + h(K)− glast(B), by Fact 8

≥ gL(K)− glast(K) + h(K), by Fact 9

≥ gL(K)− glast(K), sinceh(K) ≥ 0

≥ LB, by Fact 10.

From Theorem 1 it follows that for A* to do2N node expansions, there must be a node with a
heuristic value of at least∆ ∗ ⌈(2N −N)/N⌉, and for A* to doN2 node expansions, there must be
a node with a heuristic value of at least∆ ∗ (N − 1).

Corollary 2 Let h∗(start) denote the optimal solution cost. If A* performs more thanN node
expansions thenh∗(start) ≥ LB.

Proof. Since in the proof of Theorem 1 A* expanded nodeB before the goal,h∗(start) must be at
leastf(B), which is at leastLB.

Corollary 3 If h∗(start) ≤ λ thenM , the number of node expansions done by A* to find a path to
thegoal, is less than or equal toN +N ∗ λ/∆.

15

Proof. Using Corollary 2,

∆ ∗ ⌈(M −N)/N⌉ = LB ≤ h∗(start) ≤ λ

which implies
M ≤ N +N ∗ λ/∆.

Corollary 4 Letm be a fixed constant andG a graph of arbitrary size (not depending onm) whose
edge weights are all less than or equal tom. ThenM , the number of node expansions done by A*
during a search inG, is at mostN +N ∗m ∗ (N − 1)/∆.

Proof. Because the non-goal nodes on the solution path must each have been expanded, there are
at mostN − 1 edges in the solution path andh∗(start) is therefore at mostλ = m ∗ (N − 1). By
Corollary 3,

M ≤ N +N ∗ λ/∆ ≤ N +N ∗m ∗ (N − 1)/∆.

This is just one example of conditions under which A*’s worst-time complexity is not nearly as
bad as Martelli’s bound suggests. The key observation arising from the analysis in this section is
that there is an intimate relationship between the number ofnode expansions, the magnitude of the
heuristic values, and the cost of an optimal path to the goal.The number of node expansions can
only grow exponentially if the latter two factors do as well.

5. Pathmax and Bidirectional Pathmax

It is well known that thef -values along any path in a search tree can be forced to bemonotonic
non-decreasing. This is simply done by propagating thef -value of a parent to a child if it is larger.
This technique is usually calledpathmax. In this section, the idea behind pathmax is introduced and
then, for undirected state spaces, generalized to a new method calledbidirectional pathmaxwhich
provides better heuristic propagation.

5.1 Pathmax

Mero introduced algorithm B′, a variant of B, that dynamically updates heuristic values during the
search while maintaining admissibility [34]. This was achieved by adding two rules (known as
pathmax rules) for propagating heuristic values between a node and its children. Like algorithm B
(described in Section 4), B′ has a worst-case time complexity ofO(N2). While the pathmax rules
were introduced in the context of algorithm B, they are applicable in A* too. The rules propagate
heuristic values during the search between a parent nodep and its child nodeci (where the edge
connecting them costsc(p, ci)) as follows:

Pathmax Rule 1:h(ci)← max(h(ci), h(p)− c(p, ci)), and
Pathmax Rule 2:h(p)← max(h(p),minci∈Successors[p](h(ci) + c(p, ci))).11

For Rule 1, we knowh(p) ≤ h∗(p) (whereh∗(x) denotes the optimal cost to the goal node)
andh(ci) ≤ h∗(ci) becauseh is admissible. We also know thath∗(p) ≤ c(p, ci) + h∗(ci) because
one possible path fromp to the goal goes viaci. By combining these facts, it can be inferred that
h∗(ci) ≥ h(p) − c(p, ci). Figure 13 shows how the parent nodep updates the heuristic values

11. This is our version of pathmax Rule 2. The version in the original paper [34] is clearly not correct and is probably a
printing error.

16

(c)
78

9
22

56

9

(c)1 (c)2

1

(p) (p)

1

2(c)1

Figure 13: Pathmax Rule 1

of the child nodesc1 and c2 according to Rule 1. A consequence of this rule is that the child
node inherits thef -value of the parent node if it is larger. Pathmax Rule 1 is often written as
f(ci) := max(f(p), f(ci)). This causes thef -value to bemonotonic non-decreasingalong any
path. However, a child node can still have a heuristic value that is larger than that of the parent by
more than the change ing and the heuristic can still be inconsistent if the graph is undirected (as
in inconsistency Type 2 presented at the end of Section 3.1).Our bidirectional pathmax method
(BPMX) described below deals with such cases and corrects this type of inconsistency.

13

22
9

(c)1 (c)2

1

(p) (p)

1

2(c)1(c)
9 13

10

9

Figure 14: Pathmax Rule 2

The explanation for Rule 2 (introduced by Mero) is as follows. In directed state spaces, the
optimal path fromp to a goal must contain one ofp’s successors (unlessp is a goal), soh∗(p) is at
least as large asminci∈Successors[p](h(ci) + c(p, ci)). Rule 2 correctsh(p) to reflect this. Figure 14
shows how the child nodesc1 andc2 update the heuristic value of the parent nodep according to
Rule 2. c1 has the minimalf -value and its value is propagated to the parent. While the idea of
Rule 2 is correct, its practical value is limited. First, in some state spaces (e.g., in undirected state
spaces) there is an edge from statep to its parenta and the shortest path fromp to the goal might
pass through statea. In such cases, using Rule 2 is relevant only ifa is actually listed as a child of
p in the search graph. This will be possible only if theparent pruningoptimization is not used. We
discuss more limitations of Rule 2 in Section 5.4 after we introduce our generalization of Rule 1 to
bidirectional pathmax.

5.2 Pathmax does not make thef -function monotonic

It is sometimes thought that pathmax Rule 1 actually converts a non-monotonic cost functionf into
a monotonic cost function and, as a consequence, node re-expansion will be prevented.12 This is not

12. We do not use the term consistent because of our understanding that the cost function can be monotonic but the
heuristic can still be inconsistent as in Type 2 (presented in Section 3.1) for undirected graphs.

17

correct. It is true that after applying pathmax thef -values never decrease along the path that was just
traversed. However, thef -values can still be non-monotonic for paths that were not traversed yet.
To see this, recall that with a consistent heuristic where the cost function is monotonic, closed nodes
are never re-opened by A*, because when a node is removed fromOPEN for the first time we are
guaranteed to have found a least-cost path to it. This is the key advantage of a consistent heuristic
over an inconsistent heuristic which has a non-monotonic cost function where closed nodes can be
re-opened. Pathmax does not correct this deficiency of inconsistent heuristics. This was noted by
Nilsson [35] (p. 153) and by Zhou and Hansen [50].

10

98

f<100

(T)

(goal)
01

(b)

(a)

(start)

20

(c)

1 1
98

10

Figure 15: Example where a closed node must be re-opened withpathmax

Consider the example in Figure 15 where the heuristic is admissible but is inconsistent (h(a) =
99 but h(b) = 1), andf is non-monotonic (f(b) < f(a)). The optimal path in this example is
start− a− b− goal, with a cost of 100. A* will expandstart and thenc (f=30), at which point
a andb will be in OPEN.a will have f = 99 andb, because of pathmax, will havef = 30 instead
of f = 21. b will be now be expanded and closed, even though the least-cost path tob (via a) has
not been found. A* will then expand the entire set of nodes in the subtreeT before it expandsa. At
that pointa will be expanded, revealing the better path tob, and requiringb and all of the nodes in
T to be expanded for a second time.

5.3 Bidirectional Pathmax – BPMX

Mero’s Rule 1 was defined to propagate values between a parentand its child in the search tree.
However, this pathmax rule can be applied from a given nodex to another nodey in any direction
(not necessarily from a parent to its children in a search tree) as long as there is a path fromx to
y. This can be beneficial in application domains where the search graph is undirected, e.g., when
operators are invertible and costs symmetric. Assume an admissible heuristich whereh(x) >
h(y) + c(x, y). Now, h∗(x) ≤ c(x, y) + h∗(y) because a possible path fromx to the goal passes
throughy. Thereforeh∗(y) ≥ h∗(x)− c(x, y) ≥ h(x)− c(x, y) (sinceh is admissible) and we can
apply the following general rule:

h(y)← max(h(y), h(x) − c(x, y)). (11)

Pathmax Rule 1 used this general rule from a parent node to itschildren. In a search tree if there
is an edge from a childc to its parentp then this can be achieved by introducing a new pathmax rule
for children-to-parent value propagation as follows:

18

8

1 2(c) (c)3 (c)44(c)3(c)(c)21(c)

3

3

4
7

1

9

(p)

8
11

1

8

(p)

49 3

(a) (b)

2

2

6

2

2

8

(c)

Figure 16: Example of BPMX. The arrows show direction of the propagation of heuristic values.
Propagation occurs along the bold edges.

Pathmax Rule 3:h(p)← max(h(p), h(c) − c(c, p)).
Figure 16(a) shows how Rule 3 can be used. The heuristic of child c1 is propagated to the parentp
andp’s heuristic is increased from 3 to 8.

Our new method, bidirectional pathmax (BPMX), uses Rules 1 and 3 to propagate (inconsistent)
heuristic values in any direction, as described generally in Equation 11. Large heuristic values are
propagated along edges but to preserve admissibility we subtract the weight of the edges along
the way. Therefore, updating a node’s value can have a cascading effect (to its neighbors and so
on) as the propagation that started from childc1 continues from the parent to the other children
(as shown in Figure 16(b)). The BPMX process stops when we arrive at a node whose original
heuristic value is not smaller than the propagated value. The bold edges in Figure 16(b) correspond
to cases where BPMX further propagates the new heuristic value ofp to its children (toc2 andc3).
By contrast, childc4 cannot exploit BPMX here as its original heuristic value was8 while BPMX
would propagate a value of 6.

Note that Rule 1 only deals with inconsistencies of Type 1 (described in Section 3.1) and causes
the cost function to be monotonic along the edge. BPMX further extends this to inconsistencies of
Type 2 and causes the heuristic to be fully consistent.

5.3.1 BPMXFOR IDA*

Before discussing BPMX for IDA* we first highlight the following observation.
Observation: What is important for IDA* is not the exactf -value of a node but whether or not the
f -value causes a cutoff.
Explanation: IDA* expands a node if itsf -value isless than or equal tothe current thresholdT
and backtracks if it is larger thanT . Thus, only a cutoff reduces the work performed.

It may not be immediately obvious, but using Rule 1 with IDA* does not have any benefit.13

This is because propagating the heuristic of the parentp (with Rule 1) to the childc will cause
f(c) = f(p). It will not increase itsf -value above the thresholdT (as thef -value ofp was already
less than or equal toT) and therefore will not result in additional pruning.

13. We discuss Rule 2 in the context of IDA* in Section 5.4.

19

Using Rule 3 with IDA* has great potential as it may prune manynodes that would otherwise
be generated (and even fully expanded). For example, suppose that the current IDA* thresholdT
for Figure 17 is2. Without the propagation ofh from the left child, both the parent node (f(p) =
g(p) + h(p) = 0 + 2 = 2) and the right child (f(c1) = g(c1) + h(c1) = 1 + 1 = 2) would
be expanded. When using BPMX propagation, the following will occur. The left child will have
f(c2) = 1 + 5 = 6, and with aT = 2 IDA* will backtrack. However, BPMX will update the
parent’sh-value toh(p) = 4 and its overall cost tof(p) = 0 + 4 = 4. This results in a cutoff,
and the search will backtrack from the root node without evengenerating the right child (whose
heuristic value can be modified to 3, e.g., in A* as discussed below).

2
4

3515

2

(c)1 (c)2

1

(p)(p)

1

2(c)1(c)

2

Figure 17: BPMX. In IDA*, the right branch is not even generated.

An efficient implementation of BPMX for IDA* is provided in Algorithm 1. In this implementa-
tion, Rule 3 is applied “for free” when backtracking from a child. First, the heuristic of the parentp
is updated by Rule 3 (line 20). Then, if thef -value of the parent becomes larger than the threshold,
the subtree below it is immediately pruned (line21) and control is passed back to the parent ofp. In
this case, the other children ofp are not generated.

An alternative exhaustive implementation will not stop at line 21 but will continue to generate
all children ofp and calculate their heuristics. This may result in propagating higher heuristic values
by Rule 3 to the parentp and increase the chance of further pruning ancestors ofp. The drawback
of this implementation is that parentp is fully expanded.14 We have experimented with this variant
in most of the domains studied in this paper. However, no gains were provided and the “lazy”
approach of stopping as soon as a cutoff occurred consistently outperformed the exhaustive variant.
Therefore, we only report experimental results with the lazy variant.

A reminiscent idea of BPMX for propagating heuristic valuesbetween nodes was introduced
in the context of learning heuristics in DFS searches [3]. The difference is that unlike BPMX the
“learning algorithm” of that work requires a transpositiontable.

5.3.2 BPMXFOR A*

Due to its depth-first nature, BPMX propagation is easily implemented in IDA*, and values are
propagated naturally between children and their parents. By contrast, in A* BPMX updates are
more difficult as nodes that might be updated may need to be retrieved from OPEN or CLOSED.

BPMX can be parameterized with the maximum depth that a heuristic value will be propagated.
BPMX(1) is at one extreme, propagatingh updates only among a node and its children. BPMX(∞)
is at the other extreme, propagatingh updates as far as possible.

14. This process can be extended and we can perform ak-lookahead search to find large heuristic values.

20

Algorithm 1 IDA* with BPMX (“::” adds an element to a list)
01: functionIDA∗

bpmx(initial nodes) ⊲ Returns the optimal solution
02: threshold←− h(s)
03: repeat
04: GoalFound←−DFSbpmx(s, NULL, 0, Path, threshold, hs)
05: threshold←− next threshold()
06: untilGoalFound
07: returnPath
08: end function

09: boolean functionDFSbpmx(nodep, previousmovepm, depthg, List Path,
integerthreshold, heuristicvalue&hp)

10: hp ←− h(p)
11: if (hp + g) > threshold then return false
12: if p = goal node then return true
13: for each legalmovemi do
14: if mi = pm−1 then continue ⊲ Parent pruning
15: generate childci by applyingmi to p
16: if DFSbpmx(ci, mi, g + c(p, ci), Path, threshold, hci) = true then
17: Path←− mi :: Path
18: return true
19: else
20: hp ←− max(hp, hci − c(ci, p)) ⊲ Rule 3
21: if (hp + g) > threshold then return false ⊲ Backtrack ASAP
22: end if
23: end for
24: return false
25: end function

BPMX(1) can be implemented efficiently if the BPMX computation happens after all children
of a node have been generated (and checked for duplicates in OPEN and CLOSED) but before
they are added/moved back to OPEN and/or CLOSED. Assume thata nodep is expanded and
that itsk children c1, c2, . . . , ck are generated. References to these nodes can be saved for faster
manipulation in the following steps. Letcmax be the node with the maximum heuristic value among
all the children and lethmax = h(cmax). In addition, assume that each edge has unit cost and is
undirected.hmax can be propagated to the parent node by decreasing it by one (using Rule 3) and
then to the other children by decreasing it by one again (using Rule 1). Thus, each of the other
childrenci can have a heuristic of

hBPMX(ci) = max(h(ci), h(p) − 1, hmax − 2).

After all these nodes have their value updated, then the parent node is inserted in CLOSED (with its
newf -value) and all the children are inserted (or changed) in OPEN (with their newf -values).

21

Pseudocode for an efficient implementation of A* with BPMX(1) is shown in Algorithm 2.
There is a single data structure for OPEN and CLOSED which is implicit in calls for looking up
nodes. In our actual implementation most lookups are cachedto reduce overhead.

BPMX(d) with d > 1 starts at a new node that was just generated and continues to propagate
h-values to its generated neighborhood (nodes on OPEN and CLOSED) as long as theh-values of
nodes are being increased. There are a number of possible implementations and they all require
finding and retrieving nodes from OPEN and CLOSED. Obviously, this will incur some (even all)
of the following possible overheads associated with BPMX(d) (with d > 1) within the context of
A*:

(a) performing lookups in OPEN and/or CLOSED (when looking for neighbors),

(b) ordering OPEN nodes based on their newf -value (when these values change), and

(c) computational overhead of comparing heuristic values and assigning a new value based on
the propagations.

These costs are the same as the costs incurred when performing A* node expansions. In
BPMX(d) the propagating of heuristic values can result in the equivalent of multiple expansions
(re-openings). The propagation (and re-openings) must follow all children of a node until the depth
d parameter is satisfied. As such, we regard BPMX withd > 1 as an independent search process
rather than a small optimization on top of the main search. Our experimental results show that
node expansions that occur during the BPMX process have the same cost as A* node expansions.15

Therefore, in the remainder of the paper we will not distinguish between A* and BPMX(d > 1)
expansions. Whend = 1 the overhead is not included in the count of node expansions,only in time
measurements.

A natural question is how to determine which value for parameter d is best. It turns out that no
fixedd is optimal in the number of node expansions for all graphs. While a particulard can produce
a large reduction in the number of node expansions for a givenstate space, for a different state space
it can result in anO(N2) increase in the number of node expansions.

(goal)

02 4 6 8
1 1 1 8

(a) (b) (c) (d)

Figure 18: Worst-case example for BPMX(∞)

Figure 18 gives an example of the worst-case behavior of BPMX(∞). The heuristic values
gradually increase from nodesa to d. When nodeb is reached, the heuristic can be propagated back
to nodea, increasing the heuristic value by 1. When nodec is reached, the heuristic update can
again be propagated back to nodesb anda. In general, when theith node in the chain is generated
a BPMX update can be propagated to all previously expanded nodes. Overall this will result in
1 + 2 + 3 + · · · + N − 1 = O(N2) propagation steps with no savings in node expansions. This

15. This is true for PDB heuristics (inexpensive to compute). However, this might not be true in cases where the heuristic
calculation requires a large amount of time.

22

Algorithm 2 A* with BPMX(1) (assumes symmetric edge costs)
01: functionA∗

bpmx(1)(start, goal)
02: push(start)
03: while (queue is not empty)
04: current←− pop best node from queue
05: if current is goal return extractPath(start, goal)
06: neighbors←− generateSuccessors(current)
07: BestH ←− 0 ⊲ stores parent h-cost (from pathmax)
08: for eachneighbor 1...i in neighbors ⊲ cache these lookups for later use
09: BestH ←−max(BestH, lookupH(neighbor) − c(current, neighbor))
10: end for
11: storeH(current, max(lookupH(current), BestH))
12: for eachneighbor 1... i in neighbors
13: EdgeCost = c(current, neighbor)
14: switch (getLocation(neighbor))
15: case ClosedList:
16: if (lookupH(neighbor) < BestH − EdgeCost) ⊲ BPMX or PMX update
17: storeH(neighbor, BestH − EdgeCost)
18: end if
19: if (lookupG(current) + EdgeCost < lookupG(neighbor)) ⊲ Found shorter path
20: setParent(neighbor, current)
21: storeG(neighbor, lookupG(current) + EdgeCost)
22: reopen(neighbor)
23: end if
24: case OpenList:
25: if (lookupG(current)+EdgeCost < LookupG(neighbor)) ⊲ Found shorter path
26: setParent(neighbor, current)
27: storeG(neighbor, lookupG(current)+EdgeCost)
28: updateKey(neighbor) ⊲ Re-sort OPEN
29: end if
30: if (BestH − EdgeCost > lookupH(neighbor)) ⊲ BPMX or PMX update
31: storeH(neighbor, BestH − EdgeCost)
32: updateKey(neighbor)
33: end if
34: case NotFound: ⊲ also applies BPMX or PMX update
35: addOpenNode(neighbor, lookupG(current)+EdgeCost,
36: max(h(neighbor, goal), BestH − EdgeCost))
37: end switch
38: end for
39: end while
40: return nil
41: end function

23

provides a general worst-case bound. At most, the entire setof previously expanded nodes can be
re-expanded during BPMX propagations, which is what happens here.

(goal)

f 50f 50
52

(d)1
2

(c)

50

1
2

(a)

2

2
(b)

f<50

0

48

50

51

0

(b)
2

(a)

1

50

(c)

1 (d)

52

(goal)

Figure 19: Best-case example for BPMX(∞)

By contrast, Figure 19 gives an example of how BPMX(∞) propagation can be effective. As-
sume nodea is the start node. It is expanded and its three children (b, c andgoal) are generated with
f -valuesf(b) = 4, f(c) = 3 andf(goal) = 50. Next c is expanded andd is generated. If BPMX
is not activated (left side), then all nodes in the subtree under b with f < 50 will be expanded;
only thengoal is expanded and the search terminates. Now, consider the case where BPMX(∞) is
activated (right side). While generating noded its heuristic value is propagated with BPMX toc,
then toa and then tob raising thef -value ofb to 50. Note that we can infer that the entire subtree
belowb will have f ≥ 50. In this casef(b) = f(goal) = 50 and, assuming ties are broken in favor
of low h-values,goal is expanded and the search halts after expanding only three nodes.

5.4 Pathmax Rule 2

We have just seen the usefulness of Pathmax Rules 1 and 3. Meroalso created Rule 2 for children-
to-parent value propagation [34].

Rule 2: h(p)← max(h(p),minci∈Sucessors[p](h(ci) + c(p, ci))).
We now discuss the properties of Rule 2.

5.4.1 RULE 2 WHEN IDA* IS USED

Similar to Rule 1, there is no benefit for using Rule 2 on top of IDA* in undirected state spaces as
no pruning will be caused by it. Assume that nodep has childrenc1, c2 . . . ck and that the parent of
p is a (as shown in Figure 20). Assume also that thatcm produced the minimalf -value among all
the children. We show that neitherp nora can benefit from Rule 2 when applied top when Rules 1
and 3 are used.

24

a

kc21 cc

p

Figure 20: Example for Rule 2

• p cannot benefit from Rule 2: Assume thatp is not causing a cutoff in the search. In this
case, the search proceeds to the children. Now, if the minimum child (cm) causes a cutoff
then all the other children must also cause a cutoff. When using Rule 2, then all the children
are generated in order to find the one with minimum cost. Either way, using Rule 2 or not,all
children are generated and Rule 2 will have no added value forp.

• a cannot benefit from Rule 2: Assume that Rule 2 was activated and that we setfnew(p) =
f(cm). Now, due to the activation of Rule 1 (ordinary pathmax) thef -value is monotonically
increasing along any path of the search tree. Thus,fnew(p) ≥ f(p). If fnew(p) = f(p)
then there is no change in the course of the search by applyingRule 2. Now, consider the
case wherefnew(p) > f(p). Recall that for Rule 2 to work we must also lista as one of the
children ofp. There are now two cases. The first case (cm = a) is thata produced the minimal
f -value among the children. Now, if we apply Rule 3 we get thathnew(a) = h(p)−c(a, p) =
h(cm) + c(p, cm)− c(a, p) = h(cm) + c(p, a)− c(a, p) = h(a). Thus, there is no change to
theh-value ofa. The second case (cm 6= a) is that another child was chosen as the minimum,
meaning thath(a) + c(a, p) ≥ h(cm) + c(cm, p). Now, if we apply Rule 3 we get that
hnew(a) = h(p)− c(a, p) = h(cm) + c(p, cm)− c(a, p) ≤ h(a) + c(a, p)− c(a, p) = h(a).
Here applying Rule 3 can only decrease theh-value ofa and it is again unchanged.

Thus,a cannot benefit from applying Rule 2 either and Rules 1 and 3 aresufficient to obtain
all the potential benefits.

5.4.2 RULE 2 WHEN A* IS USED

Assume that we are running A* and that nodep is now expanded. Its children are added to OPEN
while p goes to CLOSED. If after applying Rule 2, itsf -value increases then it will go to CLOSED
but with a higherf -value because its newh-value is larger than its originalh-value. This might
affect duplicate pruning in the future if nodep is reached via a different path.

Furthermore, Rule 2 is just a special case (k = 1) of a k-lookahead search where values from
the frontier are backed up to the root of the subtree. In fact,similar propagation is used for heuristic
learning in LRTA* [23] when repeated search trials take place. This is also applicable for strict
consistent heuristics.

Based on all the above, we did not implement Rule 2 in our experiments and focus on Rules 1
and 3 which are the core aspects of BPMX value propagation with inconsistent heuristics.

25

6. Creating inconsistent heuristics

As illustrated in the quote fromArtificial Intelligence: A Modern Approach[38] given earlier, there
is a perception that inconsistent admissible heuristics are hard to create. However, it turns out that
this is not true. The following examples use PDB-based heuristics (used in many of the applications
in this paper) to create inconsistent heuristics. However similar ideas can be applied to other heuris-
tics. We show examples of inconsistent heuristics for pathfinding in explicit graphs in Section 8.

It is important to note that we can trivially make any heuristic inconsistent. For example, with a
table-based heuristic (such as a PDB) one can randomly set table entries to 0. Of course, introducing
this inconsistency results in a strictly less informed heuristic. In this section we give examples of
inconsistent heuristics which provide more informed values that can benefit the search.

6.1 Random selection of heuristics

Many domains have a number of heuristics available. When using only one heuristic the search
may enter a region with “bad” (low) estimation values (a heuristic depression). With a single fixed
heuristic, the search is forced to traverse a (possibly large) portion of that region before being able
to escape from it.

A well-known solution to this problem is to consult a number of heuristics and take their max-
imum value [5, 10, 18, 19, 24, 26]. When the search is in a region of low values for one heuristic,
it may be in a region of high values for another. There is a tradeoff for doing this, as each heuristic
calculation increases the time it takes to computeh(n). Additional heuristic consultations provide
diminishing returns in terms of the reduction in the number of node expansions, so it is not always
recommended to use them all.

Given a number of heuristics one could select which heuristic to userandomly. Only a single
heuristic will be consulted at each node, and no additional time overhead is needed over a fixed
heuristic. Random selection between heuristics introduces more diversity to the values obtained
in a search than using a single fixed selection. The random selection of a heuristic will produce
inconsistent values if there is no or little correlation between the heuristics. Furthermore, a random
selection of heuristics might produce inconsistenth-values even if all the heuristics are themselves
consistent.

When using PDBs, multiple heuristics often arise from exploiting domain specific geometric
symmetries. In particular, additional PDB lookups can be performed given a single PDB. For ex-
ample, consider Rubik’s cube and suppose we had the “yellow face” PDB described previously in
Section 2.4.1. Reflecting and rotating this puzzle will enable similar lookups for any other face with
a different color (e.g., green, red, etc.) since any two faces are symmetrical. Different (but admissi-
ble) heuristic values can be obtained for each of these lookups in the same PDB. As another exam-
ple, consider the main diagonal of the sliding-tile puzzle.Any configuration of tiles can be reflected
about the main diagonal and the reflected configuration shares the same attributes as the original
one. Such reflections are usually used when using PDBs for thesliding-tile puzzle [5, 10, 11, 26]
and can be looked up from the same PDB.

In recent work, a learning algorithm was used to decide when to switch between two (or more)
heuristics [7]. A classifier was used to map a state to a heuristic, considering the likely quality of
the heuristic estimate and the time needed to compute the value. The resulting search has inconsis-
tencies in the heuristic values used.

26

6.2 Compressed pattern databases

There is a tradeoff between the size of a table-based heuristic (such as a PDB) and the search
performance. Larger tables presumably contain more detailed information, enabling more accurate
heuristic values to be produced.

Researchers have explored building very large PDBs (possibly even on disk) and compressing
them into smaller PDBs [11, 12, 27, 39, 2]. A common compression idea is to replace multiple PDB
entries by a single entry (often exploiting a locality property, so that the values of the entries are
highly correlated), thereby reducing the size of the PDB. Topreserve admissibility, the compressed
entry must store the minimum value among all the entries thatit is replacing. This is calledlossy
compressionbecause some state lookups will end up with a less effective heuristic value. It has been
shown that if the values in PDBs are locally correlated, thenmost of the heuristic accuracy will be
preserved [11]. Thus, large PDBs can be built and then compressed into a smaller size with little
loss in performance. Such compressed PDBs are more informedthan uncompressed PDBs which
use the same amount of memory [11].

4

yx

 dcba

64

765

Figure 21: Inconsistency of a compressed pattern database

The compression process may introduce inconsistency into the heuristic, since there is no guar-
antee that the heuristic value of adjacent states in the search space will lose the same amount of
information during compression. For example, consider thePDB in Figure 21 and assume that it is
consistent. Assume thatb andc are connected by an edge with cost of1. During compression,b
might be mapped tox in the abstract space, andc to y. To preserve admissibility,x andy must con-
tain the minimum value of the states mapping to those locations. Now statesb andc are inconsistent
in the abstract space (the difference between their heuristics (=2) is bigger than the actual distance
between them (=1)).

6.3 Dual heuristic

The concept ofduality anddual heuristicsin permutation state spaces was introduced by Zahaviet
al. [14, 44, 45]. Such heuristics may produce inconsistent heuristic values. The papers provide a
detailed discussion of these concepts. Here we provide sufficient details for our purposes.

In permutation state spaces, states are different permutations of objects. Similarly, any given
operator sequence is also a permutation (i.e., transfers one permutation into another permutation).
For each states, a dual statesd can be computed. The basic definition is as follows. Letπ be the
permutation that transforms states into the goal. Thedual state ofs (labeled assd) is defined as
the state that is constructed by applyingπ to the goal. Alternatively, ifO is the set of operators that
transfers to the goal, then applyingO to the goal will reachsd.

27

PC
 d

 1C 2C C 3

 d
C 1

 2C
 d

 d
P

 3

Figure 22: Dual states of the parent and its children

This dual statesd has the important property that it is the same distance from the goal ass.
The reason is that any sequence of operators that mapss to the goal also maps thegoal to sd.
Since operators are reversible in permutation state spaces, the sequence can be inverted to mapsd

to the goal. Efficient methods have been suggested for deriving the dual statesd given a description
of states [45]. Since the distance to the goal of both states is identical, any admissible heuristic
applied tosd is also admissible fors and can be used as a heuristic for it. For a states, the term
dual lookupis used when looking upsd in the PDB. When moving from a parent state to a child
state, performing a dual lookup may produce aninconsistentvalue even if the heuristic itself (in its
regular form) is consistent. The explanation for this is as follows. In a standard search, a parent
statep, and any of its childrenci, are neighbors by definition. Thus, a consistent heuristic must
return consistent values when applied top andci. However, the heuristic values obtained forsd and
cdi may not be consistent becausesd andcdi are not necessarily neighbors (as illustrated in Figure
22).16

In general, there are two easy ways to generate inconsistency for a given domain: 1) the use of
multiple different heuristics and 2) using a heuristic thathas some values missing or degraded. We
provided some examples in this section. This list is not exhaustive and the above examples are by
no means the only ways of creating inconsistent heuristics.

6.4 Inconsistent versus consistent heuristics

Besides the potential ofh-value propagation, inconsistent heuristics have other attributes which
might reduce the number of node expansions in a search when compared to consistent heuristics.
This section addresses these attributes.

Most of the previous work on admissible heuristics mainly concentrated on improving the qual-
ity of the heuristic assessment. A heuristich1 is considered to be more informed (better quality) than
h2 if it typically returns a higher value for an arbitrary state[38]. A de factostandard usually used
by researchers is to compare the average values of a given heuristic over the entire domain space
or over a large sample of states of the domain (e.g., [10, 11, 24, 26]). Korf, Reid and Edelkamp
(denoted as KRE) introduced the notion of theoverall distributionof heuristic values [28, 29]. De-
finep(v) to be the probability that a random state of the state space will have a heuristic value ofv.
Likewise, defineP (v) to be the probability that a random state will have a heuristic valueless than

16. This phenomenon is explained in detail in the original papers [14, 44, 45]. An example is provided in the Appendix
of this paper.

28

not generated

InconsistentConsistent

46 333

53

4

64333

3 5

4 generated
expanded

Figure 23: Consistent versus inconsistent heuristics. Nodes are marked with theirh-value.

or equal tov. KRE suggested using the distribution of values from a heuristic function to measure
the “informedness” of the function. Doing this for admissible heuristics will typically show that if
a heuristic is more informed then the distribution of valueswill be higher, as will be the average
value. We show in Section 7.2.1 that, when inconsistent heuristics are used, this distribution is not
enough and there are more attributes to consider.

KRE also introduced a formula to predict the number of node expansions by IDA* on a single
iteration when using a consistent admissible heuristic [28, 29]:

N(b, d, P) =

d∑

i=0

biP (d− i),

whereb is the brute-force branching factor,d is the depth of the search (the IDA* threshold), andP is
the heuristic distribution. KRE showed that ifP (x) is defined in a particular way (the “equilibrium”
distribution) then the number of nodesn such thatf(n) ≤ d is equal toN(b, d, P) in the limit of
larged. We call these nodes thenodes with potential to be expandedor potentialnodes in short.
KRE then proved that with consistent heuristics all potential nodes will eventually be expanded by
IDA*. Assume thatn is a potential node. Since the heuristic is consistent, any ancestora of n must
also havef(a) ≤ d and is also a potential node. Then, by induction they showed that the entire
branch from the root ton will be expanded since all the nodes of the branch are potential nodes.

For inconsistent heuristics the behavior is different. Fora potential noden, there may exist an
ancestora with f(a) > d. Once IDA* visits this node, the entire subtree below it is pruned andn
will not even be generated. A potential node will actually beexpanded only ifall its ancestors are
also potential nodes. This is guaranteed for consistent heuristics but not for inconsistent heuristics.
Thus, for an inconsistent heuristic the number of potentialnodes approximated byN(b, d, P) is
only an upper bound on the number of node expansions.17

Assume a given PDB and compare, for example, the dual (or random) lookup of this PDB
to the regular consistent lookup of the same PDB. Since exactly the same PDB is used, all these
heuristics (which perform a single lookup) will have the same overall distribution of values and the
same number of potential nodes. However, as our experimental results below show, fewer nodes are
expanded in practice. The explanation for this is shown in Figure 23. Observe that in both cases
there is the sameh-value distribution for each level of the tree. In particular, at depth two there are

17. Zahaviet al. developed an alternative formula to predict the number of node expansions [42, 43]. One of its benefits
is that it provides accurate predictions for inconsistent heuristics too (as opposed to an upper bound).

29

three nodes withh-value of 3, and two single nodes withh-values of 4 and 6, respectively. In the
case of a consistent heuristic (left side of the figure), if the current IDA* threshold is 5, all three
nodes at depth two withh-value of3 havef = g + h = 2 + 3 = 5 and will be expanded. They
are all potential nodes, and since the heuristic is consistent and all their ancestors are also potential
nodes, they are all expanded. The right subtree of the root ispruned because thef -value at level 1
is f = g + h = 1 + 5 = 6 > 5.

In the case of an inconsistent heuristic (right side of the figure), only one node at depth two will
be expanded (the leftmost node). The node withh-value of 6 will be generated but not expanded
because itsf -value is8 and that exceeds the threshold. Due to BPMX, its value will bepropagated
to its parent by Rule 3 and the parent’sh-value will be changed to 5. Thef -value of the parent
will be changed to 6 and the search will backtrack without even generating the rightmost child (a
potential node withh = 3).

7. Experiments with IDA*

This section presents results from different domains that illustrate the benefits of inconsistent heuris-
tics and BPMX when used with IDA*. All experiments were performed on an Intel P4 3.4 GHz with
1 GB of RAM.

7.1 TopSpin

We experimented with the (17,4)-TopSpin puzzle which has17! = 3.56 × 1014 states. A PDB of
the leftmost 9 tokens was built, representing a pattern space of17× 16 . . . × 9 = 8.82 × 109.18

Given a PDB,17 different symmetric (geometrical) lookups can be derived.For example, a
PDB of 9 consecutive tokens ([1 . . . 9]) can also be used as a PDB of[2 . . . 10], [3 . . . 11], etc., with
an appropriate mapping of tokens. Since all the values in this PDB were smaller than 16, each entry
is encoded in 4 bits. Hence the PDB only requires 247 MB of space.

Some pairs of operators are commutative, leading to the samestate. When the search is done
using IDA*, many duplicate nodes can be avoided by forcing two commutative operators to be ap-
plied successively in only one order. For example, the operator that reverses locations(1, 2, 3, 4) is
not related to the operator that reverses locations(11, 12, 13, 14). By forcing the first one to always
be tried before the second eliminates unnecessary duplication in the search tree. This operator or-
dering decreases the number of generated nodes by an order ofmagnitude and is applied across all
our experiments.

Table 1 presents the average number of generated nodes and average time in seconds needed
for IDA* to solve 1,000 random instances with different PDB lookup strategies. The first column
(Lookups) shows the number of PDB lookups (n ≥ 1) that were performed (and maximized). The
following PDB-based heuristics were used:

• Regular: A fixed set ofn PDB lookups is chosen and used at every node in the search. Since
all nodes maximize over the same lookups, the heuristic is consistent.

18. Since this puzzle is cyclic and the data is stored in a linear array, we can assume that token number 1 is always in the
leftmost position. Thus, for the implementation, both numbers above can be divided by 17.

30

• Random: Of the 17 possible lookups,n are randomly chosen (and maximized) at each node
in the search. Since consecutive nodes have anh value that is computed differently (possibly
n different lookups), the resulting heuristic is inconsistent.

• Random + BPMX: The heuristics obtained by combining (inconsistent) random lookups are
updated with BPMX.

When multiple heuristics exist and IDA* is used then the following implementation enhance-
ment can save a considerable number of potential heuristic lookups. For a noden the heuristic
lookup should determine whetherf(n) ≤ T (does not exceed the threshold, meaning thatn should
be expanded) or whetherf(n) > T (meaning thatn is pruned). When maximizing over multiple
heuristics, instead of evaluating all the heuristics (exhaustiveevaluation) the computation can stop
when one of the heuristics exceedsT (lazy evaluation); further lookups are not needed.19 Lazy
evaluation is not relevant for A* as the maximum needs to be calculated and stored. In addition, for
IDA* too, for nodes that are expanded,all heuristics are looked up.

When BPMX is used, there is a benefit to always using exhaustive evaluations (similar to the
variant described in Section 5.3.1). Exhaustive evaluations will often yield higher values than lazy
evaluations, perhaps leading to additional BPMX cutoffs (higher values being propagated). Ex-
periments on the performance of lazy and exhaustive evaluations have been done for many of the
domains used in this research. In general for nodes where a lazy evaluation occurs, the time per
node can drop significantly, as much as by a factor of three in some of our experiments. By contrast,
exhaustive evaluations reduced the number of generated nodes, but this reduction was rather small
and never more than 20%. All the results reported in this paper used lazy evaluations.

The first row in Table 1 corresponds to the benchmark case where only one lookup is allowed.
The number of generated nodes is 40,019,429. Randomly selecting a single lookup reduces this
number by a factor 25.5 to 1,567,769 nodes. Adding BPMX to this further reduces the number of
generated nodes to 564,469—an improvement factor of 70.9 over the benchmark. This improvement
was achieved with a single PDB lookup. The regular fixed selection method needs more than four
different lookups (from the same PDB) to produce a heuristicof similar quality as the one using
the random selection with BPMX (see Row 4). This is achieved with potentially three additional
lookups, increasing the computational cost per node.

Adding more lookups provides diminishing returns. Using many lookups provide a diversity of
heuristic values and the improvement factor of an additional lookup (regular or random) decreases.
All the selection methods converge to the case of using all 17lookups. The random selection of
lookups converges faster. For a fixed number of potential lookups, the random selection strategy
always outperforms the fixed strategy. When more lookups arepossible, the relative advantage of
the random selection decreases because the fixed selection also has a diversity of values. When one
is interested in a time speedup, then many variants of both the regular (e.g., consulting all of them)
and random lookups will provide the best time results of nearly 0.3 seconds. In practice, of course,
all 17 symmetric lookups are possible and there is no reason not to use them all.

7.2 Rubik’s cube

Rubik’s cube has 20 movable cubes (cubies); 8 are corners and12 are edges. The heuristic for
Rubik’s cube is usually obtained by taking the maximum over three PDBs (one for the eight corners

19. One can try to order the heuristics to increase the chanceof getting a cutoff earlier [18].

31

Regular Random Random + BPMX
(Consistent) (Inconsistent) (Inconsistent)

Lookups Nodes Time Nodes Time Nodes Time

1 40,019,429 53.129 1,567,769 2.857 564,469 1.032
2 6,981,027 10.686 404,779 0.865 279,880 0.622
3 1,787,456 3.213 224,404 0.555 187,797 0.480
4 651,080 1.394 157,710 0.443 143,051 0.411
5 332,642 0.835 123,882 0.388 116,779 0.373
6 208,062 0.601 103,377 0.356 99,653 0.349
7 148,003 0.484 89,698 0.337 87,596 0.332
8 116,208 0.422 79,911 0.324 78,609 0.321
9 95,863 0.382 72,504 0.317 71,709 0.315
10 81,749 0.354 66,690 0.311 66,184 0.310
11 71,451 0.335 62,020 0.306 61,682 0.306
12 64,227 0.322 58,119 0.304 57,947 0.304
13 58,455 0.312 54,906 0.302 54,773 0.303
14 53,926 0.307 52,145 0.301 52,079 0.302
15 50,376 0.303 49,760 0.302 49,736 0.302
16 47,784 0.303 47,688 0.301 47,663 0.303
17 45,849 0.304 45,848 0.303 45,849 0.304

Table 1: Consistent and inconsistent heuristics for TopSpin (17,4) (IDA*)

and two covering six edges [24]). The 8-corner PDB cannot be used in an inconsistent manner (all
the corners are always examined; hence there are no symmetries and the dual lookup is identical
to the regular lookup). This section reports results using a7-edge PDB. There are 24 lines of
geometrical symmetries which arise from different ways of rotating and reflecting the cube. For
the 7-edge PDB, each of these symmetries considers a different set of edges, resulting in a different
PDB lookup. Similar tendencies were observed in other experiments (based on PDBs built from a
mix of edge and corner cubies).

Table 2 shows the average number of generated nodes and the average running time (in seconds)
over the set of 100 Rubik’s cube instances with goal distanceof 14 used by Felneret al. [14]. The
Lookups column gives the number of PDB lookups that were usedto compute the heuristic value
for a state. Lazy evaluation was used whenever possible.

The following PDB-based heuristics were used:

• Regular: The regular PDB lookup. This heuristic is consistent because the same set of cubies
is used for the PDB lookup of both parent and child nodes.

• Dual: For each node, the dual state is calculated and is looked up in the PDB. This will pro-
duce inconsistent heuristic values because the dual lookupof the parent may consult different
cubies than the dual lookup of the child.

32

Row Lookups Heuristic Nodes Time

One PDB lookup
1 1 Regular 90,930,662 28.18
2 1 Dual 19,653,386 7.38
3 1 Dual + BPMX 8,315,116 3.24
4 1 Random 9,652,138 3.30
5 1 Random + BPMX 3,829,138 1.25

Maxing over multiple PDB lookups
6 2 2 Regular 13,380,154 4.91
7 2 Regular + Dual + BPMX 2,997,539 1.34
8 2 2 Random + BPMX 1,902,730 0.83
9 4 4 Regular 1,053,522 0.64
10 4 4 Random + BPMX 1,042,451 0.64

Table 2: Consistent and inconsistent heuristics for Rubik’s cube (IDA*)

• Random: Randomly select one of the different 24 possible symmetric PDB lookups for the
given node. This is inconsistent because the set of cubies that are used for the parent are not
necessarily the same as for the child.

The table shows that single random and dual lookups perform much better than a single regular
lookup. In addition, BPMX further improves the results. Thedual lookup is much more diverse than
the regular lookup and there is much less correlation between successive lookups [14]. Therefore,
the search is not stuck in a region with low heuristic values as frequently happens with regular
lookups. A random lookup with BPMX is much faster than eitherone regular lookup (by a factor
of 24) or one dual lookup with BPMX (by a factor of 2.5).

Rows 6–10 show the results of maximizing over 2 and 4 regular and random lookups. It is
interesting to see that one random lookup with BPMX outperforms two regular lookups by a factor
of 3.5 in the number of generated nodes and by a factor of 3.9 intime. Two random lookups are
better than a regular and a dual lookup because it has a betterdiversity of values (see below). When
four lookups are allowed, the values obtained using our fourregular lookups are diverse enough that
there is no advantage to taking four random lookups.

7.2.1 DYNAMIC DISTRIBUTION OF HEURISTIC VALUES

We claimed above that part of the reason for the success of an inconsistent heuristic is the diversity
of values that get introduced into the search. This section attempts to give greater understanding to
this claim.

It is easy to analyze a domain and produce a graph showing the distribution of values produced
by a heuristic. However, the obvious question to ask is whether this static (pre-computed) distribu-
tion reflects the values that are actually seen during a search. Of interest is thedynamic distribution
of values generated during a search. Distinguishing between static and dynamic distributions of
heuristic values is not new; it has been previously used to explain why the maximum of several
weak heuristics can outperform one strong heuristic [18].

33

Regular Lookup

Dual Lookup

Random Lookup

Static Distribution

%
 N
o
d
es

0

10

20

30

40

50

60

Heuristic Value

0 2 4 6 8 10 12

Figure 24: Rubik’s cube heuristic distributions

Figure 24 shows the dynamic distribution of the heuristic values seen during the searches re-
ported in Table 2, as well as the static distribution of values in the PDB used. The following obser-
vations can be made from these results. First, there is a dramatic difference between the static and
dynamic distribution of values for the regular (consistent) heuristic. As can be seen, the dynamic
distribution for the regular lookup is greatly shifted towards the smaller heuristic values, compared
to their static distribution in the PDB. This phenomenon wasdiscussed and explained by Holteet
al. [18]. The main reason for this is that most of the generated nodes are deep in the search tree,
and their values are necessarily small to be generated at all. Second, it is easy to recognize that the
heuristic with the best performance also had a superior (shifted to the right) dynamic distribution of
heuristic values. Note that all these versions used exactlythe same PDB represented by the (overall)
static distribution of values. Third, the regular heuristic had a poor dynamic distribution because it
is consistent; when the heuristic value for a state is low, the children of that state must also have
low values. Inconsistent heuristics do not have this problem; a node can receive any value, meaning
that the distribution of values seen is closer to the static distribution of the PDB. Finally, inconsis-
tency has the effect of improving the dynamic distribution towards that of the static distribution.
The greater the degree of inconsistency, the closer the dynamic distribution approaches the static
distribution of the PDB.

7.2.2 DYNAMIC BRANCHING FACTOR AND BPMX

The effectiveness of BPMX can be characterized by its effecton the branching factor during the
search. The dynamic branching factor (DBF) is defined as the average number of children that are
generated for each node that is expanded in the search. When the heuristic function is inconsistent
and BPMX is employed, the dynamic branching factor can be smaller than the normal branching
factor.

34

Choice Lookups DBF Nodes BPMX Cuts

1 1 13.355 90,930,662 0
2 1 9.389 17,098,875 717,151
3 1 9.388 14,938,502 623,554
4 1 9.382 14,455,980 598,681
5 1 7.152 5,132,396 457,253
8 1 7.043 4,466,428 402,560
12 1 7.036 3,781,716 337,114
16 1 6.867 3,822,422 356,327
20 1 6.852 3,819,699 357,436
24 1 6.834 3,829,139 360,067

dual 1 7.681 8,315,117 796,849

Table 3: Rubik’s cube: random heuristic with BPMX

Table 3 presents DBF results for Rubik’s cube obtained usingthe 7-edge PDB. An experiment
was performed where the number of possible PDB lookups was varied, but only a single lookup
was used by randomly selecting from this set. The first columngives the number of available
heuristics to randomly select from. The other three columnsshow results averaged over the same
set of instances of Table 2.

In the first row, only one PDB lookup was used. Since the same PDB lookup was performed at
all nodes, this benchmark case is for a single consistent regular heuristic. The dynamic branching
factor here is equal to the actual branching factor,13.355, once redundant operators are removed
(consistent with the results of Korf [24]).

As the number of possible heuristic lookups increases, the DBF decreases. This results in a
significant reduction in the number of generated nodes. Notetwo phenomena in these results. First,
the range of heuristic values in Rubik’s cube is rather small, as can be seen in Figure 24. Thus, the
potential for a large difference between a parent’s heuristic value and its children’s is small. Even in
this domain inconsistency caused a dramatic performance improvement. Second, no extra overhead
is needed by these heuristics as only a single PDB lookup is performed at each node. Thus, the
reduction in the number of generated nodes is fully reflectedin the running times.

7.3 The 15-puzzle

Figure 25: BPMX (a 7-7-1 partitioning into disjoint sets of the 15-puzzle)

35

Compress BPMX Nodes Time Av. h Memory

- - 464,978 0.058 43.59 536,871
+ - 565,881 0.069 43.02 268,435
+ + 526,681 0.064 43.02 268,435

Table 4: Results on the 7-7-1 partitioning of the 15-puzzle

Another source of inconsistency can be data compression (Section 6.2). Previous research that
compressed PDBs of the 15-puzzle [11] used a 7-7-1 additive partitioning (shown in Figure 25).
These experiments were repeated, however this time BPMX wasused. The results (averaged over
the same set of 1000 random instances first used by Korf and Felner [26]) are reported in Table 4.
The first line corresponds to a regular PDB using a 7-7-1 partitioning (536 MB of memory used by
PDBs that were represented with a sparse mapping [11]). In the second line the PDB is compressed
to roughly half its size (268 MB). Due to the resulting loss ofinformation, the number of nodes
generated increased by 100,903 (from 464,978 to 565,881) agreeing with previous results [11].
Compressing the PDBs can produce inconsistency and this is born out by the BPMX results in the
third line (a decrease in the number of nodes generated to 526,681). At first glance, this seems like a
modest reduction of less than 10%. However, a different way of viewing this is that BPMX reduced
the loss of information introduced by compression by 40%, from 100,903 to 61,703. This was done
with no additional cost in memory or time.

7.4 The 24-puzzle

Row Lookups Heuristic Nodes Time

One PDB lookup
1 1 Regular 26,630,050,115 15,095
2 1 Dual 24,155,327,789 20,105
3 1 Dual + BPMX 18,188,651,278 10,761
4 1 Random 3,386,033,015 3,040
5 1 Random + BPMX 1,938,538,739 1,529

Two PDB lookups
6 2 Regular + Regular* 1,631,931,544 1,483
7 2 2 Randoms + BPMX 908,186,066 1,065

Three PDB lookups
8 3 Regular + Regular* + Dual + BPMX 852,810,804 1,142
9 3 3 Randoms + BPMX 818,601,469 1,022

Four PDB lookups
10 4 Regular + Regular* + Dual + Dual* +BPMX 751,181,974 1,331

Table 5: Results on the 24-puzzle

We now present results on the 24-puzzle using 6-6-6-6 additive PDBs [26]. Similar tendencies
were observed for the 15-puzzle with the 7-8 additive PDBs [26]. The results in Table 5 are aver-

36

aged over the 10 instances with the smallest solution lengthfrom standard 50 random states [26].
Four heuristics are available based on 6-6-6-6 additive PDBs [26] (Figure 8): regular lookup, regu-
lar lookup reflected about the main diagonal (indicated by a *in the table), dual lookup, refection
of the dual lookup. The random heuristic randomly chooses a heuristic from the set of these four
heuristics. A single dual or random lookup outperforms the regular lookup. We showed in Sec-
tion 7.1 that there is a diminishing return for adding more lookups for both the regular and random
case. In the 24-puzzle, adding more lookups (up to the maximum of four) was beneficial. While the
smallest number of nodes was achieved by using all four lookups, the best time was obtained by an
inconsistent heuristic using two or three lookups.

7.5 The Pancake puzzle

Row Lookup Nodes Time DBF

Normal Operator Order
1 Regular 342,308,368,717 284,054 15.00
2 Dual 27,641,066,268 19,556 15.00
3 Dual + BPMX 14,387,002,121 12,485 10.11
4 Regular + Dual + BPMX 2,478,269,076 3,086 10.45

Operators Ordered by Average Heuristic Difference
5 Regular 113,681,386,064 95,665 15.00
6 Dual 13,389,133,741 9,572 15.00
7 Dual + BPMX 85,086,120 74 4.18
8 Regular + Dual + BPMX 39,563,288 49 5.93

Table 6: 17-pancake results

Table 6 shows results for IDA* optimally solving 10 random instances of the 17-pancake puzzle
with a PDB of 7 pancakes. There are no geometrical symmetric PDB lookups in this domain;
and the only way to achieve inconsistency is with the dual lookup. Rows 1–3 have a single PDB
lookup. The dual heuristic reduces the number of nodes generated by more than a factor of 12. This
improvement is the consequence of the larger diversity of inconsistent heuristic values encountered
in the search. When BPMX is used with the dual heuristic, the number of nodes generated is
further reduced by almost a factor of two, the result of the dynamic branching factor falling from
15 to 10.11. The best results (row 4) are achieved by performing two lookups (regular and dual)
and using BPMX to propagate inconsistencies. This combination produces a 138-fold reduction in
nodes generated over the regular lookup on its own.

7.5.1 OPERATOR ORDERING TO INCREASEBPMX CUTOFFS

Consider the following insight which can be used to further enhance performance in some domains.
If a node has a child that would cause a BPMX cutoff, it should be generated as early in the set of
children as possible. This would allow the cutoff to be made before subtrees under the other children
are searched. If different operators tend to create inconsistency at different rates, the search could
be sped up by ordering the operators accordingly. The operators on Rubik’s cube and TopSpin are

37

symmetric and it is difficult to find a useful way to order them.This is not the case for the pancake
puzzle; each operator differs in the number of pancakes moved.

Operator Regular Dual

2–10 0.370 – 0.397 0
11 0.396 0.613
12 0.397 0.958
13 0.400 1.165
14 0.401 1.291
15 0.402 1.358
16 0.411 1.376
17 0.216 1.321

Table 7: Average Heuristic Difference (AHD) of the operators of the 17-pancake puzzle

We introduce a new term, theaverage heuristic difference(AHD). The AHD(oph) for a given
operatorop and heuristich is the average, over all statess to whichop can be applied, of|h(s) −
h(op(s))|. To estimate the AHD of an operator, a random state was chosen(s1) and then the relevant
operator was applied to this state (yielding states2). The difference in the heuristic value between
s1 ands2 was measured. This was repeated for 100 million different states. Table 7 shows the AHD
results for the operators of the 17-pancake puzzle. The Regular column presents the AHD for each
operator when the regular lookup was performed and the Dual column presents the AHD for the
dual PDB lookup.

The regular PDB lookup is consistent and therefore cannot have an AHD greater than 1. For the
dual PDB lookups the results are more interesting. Operators 2–10 all have AHD values of exactly
0, an artifact of the particular PDB used for these experiments. The PDB is based on locations 11–
17 and moves which did not affect any of these locations (operators 2–10) could not cause a change
in the dual heuristic [14, 45]. However, for larger operators (13–17), the AHD for the dual lookup
was more than 1. Note that operator 16 has a larger AHD than operator 17, even though it changes
a smaller number of locations.

In Table 6, the results for rows 1–4 were obtained by using theoperators in the order of most to
least tokens moved. For rows 5–8, the operators were orderedin decreasing order of AHD of the
dual lookup, as measured in Table 7. Even when BPMX is not used(compare rows 5 and 6 to rows
1 and 2), significant improvements are seen. When BPMX is used, AHD ordering roughly halves
the DBF and dramatically reduces the number of generated nodes (compare rows 7 and 8 to rows 3
and 4). The best result (regular and dual lookup, enhanced with BPMX and AHD ordering—row 8)
reduces the number of generated nodes by four orders of magnitude as compared to doing the usual
single regular lookup.20

20. We use simple PDBs for the pancake puzzle to demonstrate the benefits of inconsistent heuristics. However, enhanced
PDB methods [41, 17], as well as the domain specificgap heuristic [16], have been developed for this problem.
Applying our techniques on top of these heuristic will likely show similar performance gains. In fact, an advantage
of using BPMX and random heuristics for this application hasalready been demonstrated with one of these recent
PDBs [17].

38

8. Pathfinding Experiments with A*

A* has different properties than IDA*. To properly assess inconsistent heuristics in the A* setting,
we need an application domain for which A* is well suited. Whereas IDA* is the algorithm of
choice for combinatorial puzzles, A* is preferred for pathfinding in explicit state spaces. In this
section we will demonstrate that inconsistent heuristics can incur significant overhead in A* if
BPMX is not used. We then demonstrate a number of cases when inconsistent approaches can
outperform consistent approaches.

The application domain is a set of 75 grid maps from commercial games, all scaled to grids of
size 512×512. Each location on the map is either blocked or unblocked.On each map, problems are
broken into 128 buckets according to the optimal path length, with path lengths varying between 1
and 512. We randomized 1,280 problem instances from each map(different start/end locations). The
agent can move horizontally, vertically or diagonally (eight possible directions). All experiments in
this section were conducted on a 2.4GHz Intel Core 2 Duo with 4GB RAM. Most of our reported
results are only for BPMX(1) (see Section 5.3.2) and in this section when the term BPMX is used
without a parameter it refers to BPMX(1).

All running times are measured in seconds.

8.1 Pathfinding Heuristics

Octile distanceis the most common heuristic in this domain. If the distancesalong thex andy coor-
dinates between two points are(dx, dy), then the octile distance between them is

√
2∗min(dx, dy)+

|dx− dy|. This is the optimal distance between the two points if 1) there were no restrictions from
obstacles or boundaries, and 2) you are allowed to go to any ofyour neighbors in all eight possible
directions (including diagonals). The octile heuristic isconsistent and does not require any memory.

8.1.1 TRUE DISTANCE HEURISTICS

True-distance heuristics (TDHs) are memory-based heuristics that were recently developed for
pathfinding applications [40, 13]. An example of a TDH is thedifferential heuristic[40] (DH)
which is built as follows: chooseK canonical states from the domain; compute and store the
shortest path distance from allK canonical states to all other reachable states. For each canon-
ical state,S memory is required, whereS is the number of states in the state space. For the
ith canonical state,ki, an admissible heuristic for any two pointsa and b can be obtained using
hi(a, b) = max(|c(a, ki)− c(b, ki)|, octile(a, b)), wherec(x, y) is the shortest path fromx to y that
is stored in the database. Becausec(a, b) + c(b, ki) ≥ c(a, ki) for anya, b andki, it follows that
c(a, b) ≥ c(a, ki)− c(b, ki). Hence|c(a, ki)− c(b, ki)| is an admissible consistent heuristic for the
distance betweena andb.
|c(a, ki)− c(b, ki)| can sometimes produce a heuristic value higher than the octile heuristic. For

example, this can happen whenb is on the optimal path froma to ki, and the exact distance from
a to b is larger than the octile distance. However, DH can sometimes produce values smaller than
the octile distance. Taking the maximum of the DH and the octile heuristic guarantees that the new
heuristic dominates the octile heuristic.

For a given state, if one takes the maximum of all available differential heuristics, the resulting
value is a consistent heuristic. However, if a random subsetof the available heuristics is considered
then the resulting value will be inconsistent.

39

8.1.2 INTERLEAVED DIFFERENTIAL HEURISTICS

0 1 2 3 4 0

4 0 1 2 4

3 4 0 1 2 3

2 3 4 0 1 2

1 2 3 4 0 1

0 1 2 3 4 0

3

CBA D E

F

I J

G H

Figure 26: Interleaved differential heuristics

We introduce theinterleaved differential heuristic(IDH), a convenient way to get most of the
benefits of multiple DHs (i.e., with multiple canonical states) but with the storage of only one
(similar to what was done in [5]). Consider having five DHs 0...4. Instead of storing the distances
to all five canonical states at all states, only store a singledistance at each state. Consider Figure 26
with an empty grid. Each cell is labeled with the canonical state whose distance is stored at that
state. In this setup,S memory is used to store portions of all five heuristics, but the search can
benefit from all of them as follows.

A heuristic value between two states is only available if thedistance to the same canonical state
is stored at each state. Thus, if the current node being expanded is stateD at the bottom of the
grid and the goal is stateG (dotted border), then DH can be used to directly lookup a heuristic
value between these two states (both use canonical state 3).However, if stateA is being expanded,
no differential heuristic betweenA andG can be directly computed (different canonical states).
However, neighboringG is stateF for which such a heuristic can be computed. Thus,h(A,G) =
|c(A, k0)−c(F, k0)|−c(F,G), for canonical statek0. There are many lookups that can be performed
using both the neighborhood of the current search node and the neighborhood of the goal. More
lookups will improve the heuristic estimate but take more time. In this work only lookups from the
current state to neighbors of the goal are performed.

The final heuristic is the maximum of the computed IDH heuristic and the octile heuristic.
Because different heuristics are used at each state, the overall heuristic is inconsistent.

For further efficiency and improved performance, when we useIDHs we perform a small
breadth-first search starting at the goal until one possiblestate is found for each possible DH lookup.
We cache all distances and associated errors. Then, for any given node during the search we perform
a single lookup in the cache to lookup a heuristic value. Thiscache approach is efficient because
the identity of the neighbor state is unimportant; only the distance and additional error are needed.
Therefore the cache is the size of the number of interleaved heuristics, not the number of neighbors
of the goal.

40

8.2 Random heuristic

The first set of experiments illustrates the effect of BPMX onA* when an inconsistent heuristic is
used. Three heuristics are compared:

(a) octile distance (consistent, used as the baseline);

(b) ten DHs (10 canonical states) were built and in a given state one was randomly chosen to use
(inconsistent, calledrandom). This was done with and without BPMX; and

(c) maximum of all ten DHs (consistent, best possible heuristic).

The memory needs for 10 DHs (for both random and maximum) is10S.

A
v
er
ag
e
n
o
d
es
 e
x
p
an
d
ed

100

101

102

103

104

105

A
v
er
ag
e
ti
m
e
el
ap
se
d
 (
se
co
n
d
s)

10-4

10-3

10-2

10-1

100

Solution path length

0 50 100 150 200 250 300 350 400 450 500 550

Memory Usage: 10S

A* - 10S Random

A* - Octile

A* - 10S Random + BPMX(1)

A* - 10S Max

Figure 27: Nodes expanded in pathfinding with10S memory

Figure 27 presents experimental results for the number of nodes (bottom) and the CPU time
(top). The problem instances were partitioned into bucketsbased on their solution length. Thex-
axis presents the different solution lengths, with each point being the average solution length of a
bucket. They-axis is the number of node expansions using a logarithmic scale.

As expected, A* with the max of all possible heuristics expands the fewest number of nodes. A*
with the random heuristic and no BPMX expands the most. The random heuristic can never produce

41

worse heuristic values than the octile heuristic. However,random without BPMX performs almost
an order of magnitude more node expansions than the octile heuristic due to node re-expansions.
From the slope of the lines, it appears that random without BPMX adds a slight polynomial overhead
to A*. When BPMX is added to random it performs better than A* with the octile heuristic, and the
performance is quite close to the consistent (max) heuristic. This shows that BPMX is effective at
overcoming the node re-expansion problem. It is impressivethat BPMX enhances random, with its
single lookup, to achieve nearly the performance of max, with its ten lookups.

Timing results (top of the figure) show similar trends. Random (with and without BPMX) has
faster lookup times than the max heuristic (fewer heuristics are consulted) and for short paths has
better time performance. Unlike IDA*, where the algorithm only needs to know whether a cutoff
occurs, in A* the correct maximum value is needed. Hence, lazy evaluation is not possible in A*.

8.2.1 FIXED NUMBER OF LOOKUPS

1

2
3

45

67

8
9

10

1

23

45

6
7

8
9

N
o
d
es
 e
x
p
an
d
ed

2000

5000

10000

Time elapsed

0.005 0.01 0.02

Memory Usage: 10S

k fixed lookups

k random lookups

Figure 28: Comparing fixed and random lookups

Figure 28 presents a comparison wherek heuristics were used. Thesek lookups were either
fixed (same heuristic used at all nodes; consistent) or randomized (random selection at a given
node; inconsistent) out of 10 available heuristics. BPMX was used for the inconsistent heuristics.
In this experiment only the problems with the longest solutions on each map were considered. Each
point represents the average of approximately 500 instances, plotting both time and node expansions
on logarithmic scales. The top curve shows the performance given k fixed lookups are used, while
the bottom curve shows the performance usingk random lookups.

This experiment shows that if the number of lookups is fixed, then a random strategy is better
than a fixed strategy for low values ofk, as more diversity is added to the resulting heuristic. When
k increases, the significance of this effect decreases as morelookups implicitly adds more diversity
of values with the fixed lookups too. In this domain, the consistent max-of-10 heuristic achieved
the best time results.

42

The results are explained by a number of key differences between using maps and using com-
binatorial puzzles as application domains. These differences cause more difficulties to achieve
speedup in the search with inconsistent heuristics in the pathfinding domains than in the puzzle
domains.

• Memory: Unlike the permutation puzzles, wherek lookups (random or fixed) need the same
amount of memory, herek fixed lookups needkS memory, whilek random lookups (out
of 10) need10S memory. k fixed lookups uses less memory and therefore may have better
memory and cache performance. This explains why whenk ≥ 7 the fixed lookups have a
lower search time than the random lookups.

• Indexing time: In the puzzle domains the cost of determining where to find a heuristic lookup
is relatively expensive. Typically a non-trivial indexingfunction is needed, and possibly the
application of one or more symmetries and/or permutations.In the map domain, indexing is
easier to compute, leading to (slightly) faster lookup times.

• Node re-expansion: In IDA* (as used in the puzzle domains), an inconsistent heuristic
does not affect performance. In A* (as used in the maps domain), the problem of node
re-expansions can cause problems (even when BPMX is used).

Thus, the maximum of 10 heuristic would be the best choice in the pathfinding domain both in
nodes and in time, while in the puzzles inconsistent heuristics with fewer lookups might yield faster
times (e.g., in our 24-puzzle results).

Given a new domain, these are important factors which determine whether inconsistent ap-
proaches will be successful. In Section 8.3 we show that the interleaved heuristic allows multiple
lookups and improves the performance of differential heuristics using inconsistency and BPMX.

8.2.2 VARYING THE NUMBER OF LOOKUPSPERFORMED

This section examines the performance of random lookups as the amount of available memory
(and number of heuristics) increases up to100S. Three approaches for performing lookups are
considered:

(a) take the maximum of all available heuristics at each node,

(b) take the maximum of 10% of the available heuristics at random (and use BPMX), and

(c) take the maximum of 20% of the available heuristics at random (and use BPMX).

For example, if 10 heuristics are available (10S memory), then 1 or 2 lookups are performed at each
state for the 10% and 20% heuristics, respectively. Similarly, if 50 heuristics are available, 5 or 10
lookups are performed for the 10% and 20% heuristics respectively.

Figure 29 shows three curves, one for each approach. Between10 and 100 differential heuris-
tics were built, increasing by intervals of 10. The nodes expanded and time elapsed to solve the
hardest problems (length 508–512) on each map are computed and compared for each of the three
approaches. The points which correspond to having 10, 50 and100 differential heuristics available
are labeled on each curve. This is a log-log plot, making the differences easier to see.

Consider the consistent heuristic which takes the maximum over all available heuristics. With 10
differential heuristics, an average of 7 milliseconds is needed to complete a search with 1,884 node

43

10

50

100

10

50

100

10

50

100

A
v
er
ag
e
n
o
d
es
 e
x
p
an
d
ed

500

1000

2000

3000

Average time elapsed

0.004 0.006 0.008 0.010 0.012 0.014

Differential Heuristic (Consistent)

Differential Heuristic (10% of Lookups)

Differential Heuristic (20% of Lookups)

Figure 29: Time versus nodes tradeoff as more heuristics areavailable

expansions. As more differential heuristics are used, the number of node expansions monotonically
decreases. However, execution time only decreases until 30differential heuristics are used, at which
point the cost of performing additional lookups overtakes the reduction in nodes expanded.

Randomly using only 10% of the available heuristics is inconsistent. This curve begins with
the worst performance of the three in terms of both nodes and time. However, when 10 random
heuristics (out of 100) are used it is able to match the best time performance of the consistent
heuristic (30 lookups) and is faster than the consistent heuristic with 40 or more lookups.

Randomly using 20% of the available heuristics matches the time performance of 30 consistent
lookups when performing only six random lookups (both use30S memory). The fastest perfor-
mance is when60S memory is available (12 lookups are performed) and is significantly better than
the best fixed lookup result. The error bars on this curve correspond to 95% confidence intervals,
showing that this result is statistically significant, albeit by a small margin.

8.3 Interleaved Differential Heuristics

In this section, experimental results comparing a number ofapproaches that all use1S memory are
reported. The octile heuristic is used as the baseline (using the same results shown previously).
A single consistent lookup is compared to an interleaved differential heuristic (IDH, defined in
Section 8.1.2) built using 10 differential heuristics (1S memory). Figure 30 presents the node
expansions and the CPU time for these approaches. The results are plotted as a function of the
solution length. Unlike previous figures, both axes have linear scales.

The nodes expanded and timing results results reinforce theearlier discussion. BPMX is critical
to achieving good performance. Again, even though the heuristic values are no worse than that of
the octile heuristic, the performance of the interleaved (inconsistent) heuristic without BPMX is

44

A
v
er

ag
e

n
o
d
es

 e
x
p
an

d
ed

0

5000

10000

15000

20000

25000

A
v
er

ag
e

ti
m

e
el

ap
se

d
 (

se
co

n
d
s)

0

0.01

0.02

0.03

0.04

0.05

Solution path length

0 50 100 150 200 250 300 350 400 450 500 550

Memory Usage: 1S

A* - 1S Interleaved, no BPMX

A* - Octile

A* - 1S Consistent Lookup

A* - 1S Interleaved, BPMX(∞)

A* - 1S Interleaved, BPMX(1)

Figure 30: Nodes expanded with1S memory

poor (roughly by a factor of 10 for the hardest problems). Both versions of the interleaved heuristic
with BPMX outperform the consistent DH heuristic. BPMX(1) was better than BPMX(∞). When
1S memory is available for this domain, an inconsistent heuristic outperforms a consistent heuristic
and produces the best results. The curves for timing resultsmaintain their same orderings and the
same relative performance, supporting that BPMX node expansions (ford > 1) should count the
same as A* node expansions

Figure 31 shows the results for using 80 DHs interleaved into10S memory. This is compared
to 10S memory for 10 fixed lookups. The consistent heuristic with 10S is relatively informed but a
slight reduction was achieved by the inconsistent heuristic.

8.4 Different degrees of BPMX

The final experiment examines the effect of increasing the BPMX propagation depth. Figure 32
shows the effect of using different BPMX propagation depths. The set of problems from Figure 27
are used, plotting the number of nodes expanded as a functionof the solution length. The heuristic
is a random selection from the 10 available DHs.Node expansionsrefers to each time the neighbors
of a node are generated and looked up in OPEN or CLOSED. As explained above, this process is

45

A
v
er
ag
e
n
o
d
es
 e
x
p
an
d
ed

0

500

1000

1500

2000

2500

A
v
er
ag
e
ti
m
e
el
ap
se
d
 (
se
co
n
d
s)

0

2

4

6⋆10-3

Solution path length

0 50 100 150 200 250 300 350 400 450 500 550

Memory Usage: 10S

A* - 10S Consistent

A* - 10S Interleaved, BPMX(1)

Figure 31: Average nodes expanded and time with10S memory

N
o
d
es

 e
x
p
an

d
ed

0

1000

2000

3000

4000

5000

6000

Solution path length

0 50 100 150 200 250 300 350 400 450 500 550

BPMX(∞)

BPMX(4)

BPMX(3)

BPMX(2)

BPMX(1)

Figure 32: Average nodes expanded for different degrees of BPMX propagation

exactly the same in BPMX(k) for k > 1 as in a regular A* expansion. Hence, BPMX expansions
are counted the same as A* expansions. Time results are omitted as they show the same trend.

46

For this domain and for this heuristic, BPMX(1) was the best.Larger values ofk do not help
on average, as sufficiently large heuristics seem to always be within one step. In a sense this is
fortunate, as BPMX(1) is easy to implement and produces the best results.

9. Discussion and conclusions

Historically, inconsistent heuristics have been generally avoided when searching for optimal so-
lutions because of the cost of re-expanding closed nodes with A* and the belief that inconsistent
heuristics are hard to concoct. This paper has demonstratedthat effective inconsistent heuristics are
easy to create, can be integrated into IDA* and A*, and that the benefits of doing so often substan-
tially reduce the search effort. This represents an important change to the conventional wisdom for
heuristic search.

IDA* re-expands nodes whether the heuristic is consistent or not, so using inconsistent heuristics
does not hurt its behavior. We showed that A*’s worst-case exponential behavior is only valid under
unrealistic graph settings. Furthermore, we generalized the known pathmax propagation rules to
bidirectional pathmax (BPMX) and showed that BPMX can lead to further performance gains.

Indeed, experimental results showed major performance gains with inconsistent heuristics for
IDA* and for A*. For all domains where IDA* was used (the puzzle domains), a very large reduc-
tion (more than an order of magnitude for many cases) in the number of generated nodes (and CPU
time) was obtained when a single inconsistent heuristic wasused instead of a single regular con-
sistent heuristic. This was the consequence of introducingmore diversity into the heuristic values
encountered in a search. A further reduction in the number ofgenerated nodes was obtained when
BPMX was implemented on top of the inconsistent heuristic, as one large heuristic value might
influence the entire neighborhood of states.

In all the domains studied in this paper, more than a single heuristic is available either due to
internal symmetries of the same PDB (in the puzzles) or to manually creating more heuristics (in the
pathfinding domain). When multiple heuristics exist, clearly taking the maximum of all heuristics
provides the best heuristic value for all states and generates the fewest nodes. This comes with
an increase in the runtime overhead per node because of the cost of the additional lookups. More
heuristics being considered increases the diversity of heuristic values, reducing the number of node
expansions. Therefore, when multiple heuristics are available and more lookups are performed, the
performance advantage of inconsistent over consistent heuristics decreases. The results presented
in this paper vary, in part, because of the number of heuristics available in each of the experimental
domains.

For TopSpin, the relative advantage of inconsistent heuristics over regular heuristics remains
valid for a large range of the number of multiple lookups thatare perfomed. In practice, one might
use all 17 lookups as they perform equally to other variants of the random lookups. For Rubik’s
cube when four lookups are possible the advantage of inconsistent heuristics disappears.

For the 24-puzzle, the maximum number of lookups is four. Twoor three random lookups were
shown to outperform (in time) the maximum of all four. For thepancake puzzle, only a single
lookup exists and the use of inconsistent heuristics produced spectacular gains.

When A* is used (in the pathfinding domain), the problem of node re-expansion arises. This
issue can cause a single (random) inconsistent heuristic togenerate more nodes than a consistent
(octile) heuristic, even though the inconsistent heuristic returns a superior heuristic value for all
states. When BPMX is added, the inconsistent heuristic (random) outperforms a single consistent

47

heuristic and is almost as good as the maximum of ten heuristics (both in node expansions and time).
However, the max of 10 heuristics is still the best choice.

It is more difficult to obtain a speed up when using multiple heuristics in an inconsistent manner
in the pathfinding domain than in the puzzle domains for a number of reasons. First, the number
of states in the pathfinding domain grows quadratic in the depth of the search while in the puzzle
domains it grows exponentially—there is more room for improvement. Second, no symmetries are
possible in the pathfinding domain and more (potential) lookups need more memory. Third, the
lookup time is much smaller than a PDB lookup, so performing multiple lookups is not as costly.
Finally, there is the issue of node re-expansions. However,despite this complication, in this domain
too the use of an inconsistent heuristic provides the best results. An inconsistent heuristic that is
based on interleaving a number of heuristics was shown to outperform a consistent heuristic given
the same amount of memory.

The major result of this paper is the demonstration that inconsistent heuristics can increase
the diversity of values encountered in a search, leading to improved performance. Based on these
results, it is our expectation that the use of inconsistent heuristics will become an accepted and
powerful tool in the development of high-performance search algorithms.

A number of directions remain for future research. Identifying more ways for creating incon-
sistent heuristics will help make their usage more common and beneficial. As well, more research
is needed on different variations of BPMX. In particular, different levels of lookahead searches for
finding large heuristic values might result in better overall performance.

9.1 Acknowledgments

This research was supported by the Israel Science Foundation (ISF) under grants number 728/06
and 305/09 to Ariel Felner. The research funding from Alberta’s Informatics Circle of Research
Excellence (iCORE) and Canada’s Natural Sciences and Engineering Research Council (NSERC)
is greatly appreciated.

References

[1] A. Bagchi and A. Mahanti. Search algorithms under different kinds of heuristics – A compar-
ative study.Journal of the ACM, 30(1):1–21, 1983.

[2] M. Ball and R. C. Holte. The compression power of symbolicpattern databases. InInterna-
tional Conference on Automated Planning and Scheduling (ICAPS-08), pages 2–11, 2008.

[3] B. Bonet and H. Geffner. Learning depth-first search: A unified approach to heuristic search
in deterministic and non-deterministic settings, and its application to MDPs. InInternational
Conference on Automated Planning and Scheduling (ICAPS-06), pages 142–151, 2006.

[4] T. Chen and S. Skiena. Sorting with fixed-length reversals. Discrete Applied Mathematics,
71(1–3):269–295, 1996.

[5] J. C. Culberson and J. Schaeffer. Pattern databases.Computational Intelligence, 14(3):318–
334, 1998.

[6] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A*.
Journal of the ACM, 32(3):505–536, 1985.

48

[7] C. Domshlak, E. Karpas, and S. Markovitch. To max or not tomax: Online learning for
speeding up optimal planning. InAAAI Conference on Artificial Intelligence (AAAI-10), pages
1701–1706, 2010.

[8] H. Dweighter. Problem e2569.American Mathematical Monthly, 82:1010, 1975.

[9] S. Edelkamp. Planning with pattern databases. InEuropean Conference on Planning (ECP-
01), pages 13–24, 2001.

[10] A. Felner, R. E. Korf, and S. Hanan. Additive pattern database heuristics.Journal of Artificial
Intelligence Research, 22:279–318, 2004.

[11] A. Felner, R. E. Korf, R. Meshulam, and R. C. Holte. Compressed pattern databases.Journal
of Artificial Intelligence Research, 30:213–247, 2007.

[12] A. Felner, R. Meshulam, R. C. Holte, and R. E. Korf. Compressing pattern databases. In
National Conference on Artificial Intelligence (AAAI-04), pages 638–643, 2004.

[13] A. Felner, N. Sturtevant, and J. Schaeffer. Abstraction-based heuristics with true distance
computations. InSymposium on Abstraction, Reformulation and Approximation (SARA-09),
2009.

[14] A. Felner, U. Zahavi, J. Schaeffer, and R. C. Holte. Duallookups in pattern databases. In
International Joint Conference on Artificial Intelligence(IJCAI-05), pages 103–108, 2005.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths.IEEE Transactions on Systems Science and Cybernetics, SCC-4(2):100–
107, 1968.

[16] M. Helmert. Landmark heuristics for the pancake problem. In Third Annual Symposium on
Combinatorial Search (SOCS-10), pages 109–110, 2010.

[17] Malte Helmert and Gabriele Röger. Relative-order abstractions for the pancake problem. In
ECAI, pages 745–750, 2010.

[18] R. C. Holte, A. Felner, J. Newton, R. Meshulam, and D. Furcy. Maximizing over multiple
pattern databases speeds up heuristic search.Artificial Intelligence, 170:1123–1136, 2006.

[19] R. C. Holte, J. Newton, A. Felner, R. Meshulam, and D. Furcy. Multiple pattern databases.
In International Conference on Automated Planning and Scheduling (ICAPS-04), pages 122–
131, 2004.

[20] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald. Hierarchical A*: Searching
abstraction hierarchies efficiently. InNational Conference on Artificial Intelligence (AAAI-96),
pages 530–535, 1996.

[21] A. Junghanns and J. Schaeffer. Domain-dependent single-agent search enhancements. In
International Joint Conference on Artificial Intelligence(IJCAI-99), pages 570–575, 1999.

[22] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.Artificial
Intelligence, 27(1):97–109, 1985.

49

[23] R. E. Korf. Real-time heuristic search.Artificial Intelligence, 42(3):189–211, 1990.

[24] R. E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases. InNational
Conference on Artificial Intelligence (AAAI-97), pages 700–705, 1997.

[25] R. E. Korf. Recent progress in the design and analysis ofadmissible heuristic functions. In
National Conference on Artificial Intelligence (AAAI-00), pages 1165–1170, 2000.

[26] R. E. Korf and A. Felner. Disjoint pattern database heuristics. Artificial Intelligence, 134(1-
2):9–22, 2002.

[27] R. E. Korf and A. Felner. Recent progress in heuristic search: A case study of the four-peg
Towers of Hanoi problem. InInternational Joint Conference on Artificial Intelligence(IJCAI-
07), pages 2324–2329, 2007.

[28] R. E. Korf and M. Reid. Complexity analysis of admissible heuristic search. InNational
Conference on Artificial Intelligence (AAAI-98), pages 305–310, 1998.

[29] R. E. Korf, M. Reid, and S. Edelkamp. Time complexity of iterative-deepening-A*.Artificial
Intelligence, 129(1–2):199–218, 2001.

[30] R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald. Frontiersearch. Journal of the JACM,
52(5):715–748, September 2005.

[31] A. Mahanti, S. Ghosh, D. Nau, A. Pal, and L. Kanal. On the asymptotic performance of IDA*.
Annals of Mathematics and Artificial Intelligence, 20(1–4):161–193, 1997.

[32] A. Martelli. On the complexity of admissible search algorithms.Artificial Intelligence, 8(1):1–
13, 1977.

[33] M. McNaughton, P. Lu, J. Schaeffer, and D. Szafron. Memory efficient A* heuristics for
multiple sequence alignment. InNational Conference on Artificial Intelligence (AAAI-02),
pages 737–743, 2002.

[34] L. Mero. A heuristic search algorithm with modifiable estimate.Artificial Intelligence, 23:13–
27, 1984.

[35] N. Nilsson.Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.

[36] J. Pearl.Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

[37] D. Ratner and M. K. Warmuth. Finding a shortest solutionfor the N× N extension of the
15-puzzle is intractable. InNational Conference on Artificial Intelligence (AAAI-86), pages
168–172, 1986.

[38] S. Russell and P. Norvig.Artificial Intelligence, A Modern Approach, Third Edition. Prentice
Hall, 2010.

[39] M. Samadi, M. Siabani, A. Felner, and R. C. Holte. Compressing pattern databases using
learning. InEuropean Conference on Artificial Intelligence (ECAI-08), pages 495–499, 2008.

50

[40] N. Sturtevant, A. Felner, M. Barer, J. Schaeffer, and N.Burch. Memory-based heuristics for
explicit state spaces. InInternational Joint Conference on Artificial Intelligence(IJCAI-09),
pages 609–614, 2009.

[41] F. Yang, J. Culberson, R. C. Holte, U. Zahavi, and A. Felner. A general theory of additive state
space abstractions.Journal of Artificial Intelligence Research, 32:631–662, 2008.

[42] U. Zahavi, A. Felner, N. Burch, and R. C. Holte. Predicting the performance of IDA* with
conditional distributions. InAAAI Conference on Artificial Intelligence (AAAI-08), pages 381–
386, 2008.

[43] U. Zahavi, A. Felner, N. Burch, and R. C. Holte. Predicting the performance of IDA* (with
BPMX) with conditional distributions.Journal of Artificial Intelligence Research, 37:41–83,
2010.

[44] U. Zahavi, A. Felner, R. C. Holte, and J. Schaeffer. Dualsearch in permutation state spaces.
In National Conference on Artificial Intelligence (AAAI-06), pages 1076–1081, 2006.

[45] U. Zahavi, A. Felner, R. C. Holte, and J. Schaeffer. Duality in permutation state spaces and
the dual search algorithm.Artificial Intelligence, 172(4–5):514–540, 2008.

[46] U. Zahavi, A. Felner, J. Schaeffer, and N. R. Sturtevant. Inconsistent heuristics. InNational
Conference on Artificial Intelligence (AAAI-07), pages 1211–1216, 2007.

[47] Z. Zhang, N. Sturtevant, J. Schaeffer, R. C. Holte, and A. Felner. A* search with inconsistent
heuristics. InInternational Joint Conference on Artificial Intelligence(IJCAI-09), pages 634–
639, 2009.

[48] R. Zhou and E. Hansen. Space-efficient memory-based heuristics. InNational Conference on
Artificial Intelligence (AAAI-04), pages 677–682, 2004.

[49] R. Zhou and E. Hansen. Breadth-first heuristic search.Artificial Intelligence, 170(4-5):385–
408, 2006.

[50] R. Zhou and E. A. Hansen. Memory-bounded A* graph search. In Florida Artificial Intelli-
gence Research Society (FLAIRS-02), pages 203–209, 2002.

Appendix A. Example for dual state heuristic

In this section, we provide an example that shows why the dualheuristic can provide inconsistent
values. Consider the9-pancake puzzle states shown in Figure 33. StateG is the goal state of this
puzzle. StateS1 is the neighbor ofG obtained by reversing the tokens at locations 1-3 (shown in
the bold frame), and stateS2 obtained by further reversing the tokens in locations 1-6. StatesGd,
Sd
1 andSd

2 are the dual states ofG, S1 andS2 respectively.
Note that in this particular exampleS1 andSd

1 are identical. In this domain applying a single
operator twice in a row will reach the same state and stateS1 is a single move away from the goal. It
is easy to see that applying the same sequence of operators (reverse locations 1-3, reverse locations
1-6) toSd

2 will produce the goal state. Observe that while statesS1 andS2 are neighboring states,Sd
1

andSd
2 (their duals) are not neighbors. Reversing any consecutivek first tokens of stateSd

1 will not

51

*

987654321

1 2 3 4 5 6 7 8 9

6***

654***

***456

654

4

***654

65

1364

654123

23146 2 7 8 95

654123 97 8

2

0

1

1

0 0

0

1

0

0

2

hThe corresponding patternCostState

G

S

S

G

S

S
d

1
d

2

2

1

d

987

7 8 95 2

*

* *

* *

4 5 * * *

* * *

Figure 33: 9-pancake states

arrive at nodeSd
2 . Therefore, a consistent heuristic might return values forSd

1 andSd
2 which differ

by more than 1. Using these values forS1 andS2 would be inconsistent since they are neighbors.
This can be shown by the following PDB example. Suppose patterns for the9-pancake puzzle are
defined by only considering tokens4 − 6 while ignoring the rest of the tokens. The resulting PDB
provides distances to the goal pattern from all reachable patterns. The right column of Figure 33
shows the corresponding pattern for each state obtained by using the∗ symbol to represent a “don’t
care”.

Regular PDB lookups produce consistent heuristic values during search [20]. Indeed, since
statesS1 andS2 are neighbors, their PDB heuristic values differ by at most 1. In stateS1, tokens
4 − 6 are in their goal locations and thereforeh(S1) = 0. In stateS2 tokens4 − 6 are not in their
goal locations and we need to apply one operator to reach the goal pattern and thush(S2) = 1.
Dual PDB lookups are admissible, but not necessarily consistent. The dual PDB lookup for state
S1 (i.e., the PDB lookup for stateSd

1) returns 0 since tokens4 − 6 are in their goal location for
stateSd

1 . However, the pattern projected from stateSd
2 is two moves away from the goal pattern.

Thus, performing the dual lookup for statesS1 andS2 (i.e., PDB lookups for statesSd
1 andSd

2) will
produce heuristics that are inconsistent (0 and 2). When moving fromS1 toS2 (or vice versa), even
thoughg was changed by 1,h was changed by 2.

52

