Inconsistent Heuristics in Theory and Practice

Ariel Felner FELNER@BGU.AC.IL
Department of Information Systems Engineering,

Ben-Gurion University of the Negev

Beer-Sheva, Israel, 85104

Uzi Zahavi ZAHAVIU @BIU.AC.IL
Department of Computer Science

Bar-llan University

Ramat-Gan, Israel, 52900

Robert Holte

Jonathan Schaeffer

Nathan Sturtevant

Zhifu Zhang {HOLTE,JONATHAN,NATHANST,ZHANG } @CS.UALBERTA.CA
Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada T6G 2E8

Abstract

In the field of heuristic search it is usually assumed thatiasifsle heuristics are consistent,
implying that consistency is a desirable attribute. Thentéinconsistent heuristic” has, at times,
been portrayed negatively, as something to be avoided. dPanis is historical: early research
discovered that inconsistency can lead to poor performéorc&* (nodes might be re-expanded
many times). However, the issue has never been fully inyasd, and was not re-considered after
the invention of IDA*.

This paper shows that many of the preconceived notions aboomsistent heuristics are out-
dated. The worst-case exponential time of inconsistentistéas is shown to only occur on con-
trived graphs with edge weights that are exponential initteec the graph. Furthermore, the paper
shows that rather than being something to be avoided, iigtens heuristics often add a diversity
of heuristic values into a search which can lead to a redadtidhe number of node expansions.
Inconsistent heuristics are easy to create, contrary todhmnon perception in the Al literature. To
demonstrate this, a number of methods for achieving effeaticonsistent heuristics are presented.

Pathmax is a way of propagating inconsistent heuristicasin the search from parent to chil-
dren. This technique is generalized into bidirectionahpaix (BPMX) which propagates values
from a parent to a child node, and vice versa. BPMX can be fiated into IDA* and A*. When
inconsistent heuristics are used with BPMX, experimergalits show a large reduction in the
search effort required by IDA*. Positive results are alsesgnted for A* searches.

Keywords: Heuristic search, admissible heuristics, inconsistentigcs, A*, IDA*

1. Introduction and overview

Heuristic search algorithms such as A* [15] and IDA* [22] argded by the cost functiofi(n) =
g(n) + h(n), whereg(n) is the cost of the current path from the start node to nodedh(n) is a

heuristic function estimating the cost fromto a goal node. If:(n) is admissiblg(i.e., is always a
lower bound) these algorithms are guaranteed to find optethis.

The A* algorithm is guaranteed to return an optimal solutioty if an admissible heuristic is
used. There is no requirement that the heuristicdesistent It is usually assumed that admissible
heuristics are consistent. In their popular Al textbdgkificial Intelligence: A Modern Approagh
Russell and Norvig write that “one has to work quite hard tocawt heuristics that are admissible
but not consistent” [38]. Many researchers work under tlsei@ption that “almost all admissible
heuristics are consistent” [25]. Some algorithms reqguig the heuristic be consistent (such as
Frontier A* [30], which searches without the closed I&the term “inconsistent heuristic” has,
at times, been portrayed negatively, as something thaidheuavoided. Part of this is historical:
early research discovered that inconsistency can leaddo gerformance for A*. However, the
issue of inconsistent heuristics has never been fully tiy&®d or re-considered after the invention
of IDA*. This paper argues that these perceptions aboutisistent heuristics are wrong. We show
that inconsistent heuristics have many benefits. Furthey,¢an be used in practice for many search
domains. We observe that many recently developed hesrsteinconsistent.

A known problem with inconsistent heuristics is that theyyncause algorithms like A* to
find shorter paths to nodes that were previously expandednaeded into the closed list. If this
happens, then these nodes must be moved back to the opemhigse they might be chosen for
expansion again. This phenomenon is knownade re-expansionrA* with an inconsistent heuris-
tic may perform an exponential number of node re-expandi®@®s We present insights into this
phenomenon, showing that the exponential time behavior ampears in contrived graphs where
edge weights and heuristic values grow exponentially viighgraph size. For IDA*, it is important
to note that node re-expansion is inevitable due to the iligols depth-first search. The use of an
inconsistent heuristic does not exacerbate this. Becamsestory of previous searches is main-
tained, each separate path to the node will be examined by Whwether the heuristic is consistent
or not.

Inconsistent heuristics often add a diversity of heurishtues into a search. We show that
these values can be used to escape heuristic depressigimngref the search space with low
heuristic values), and can lead to a large reduction in thecheeffort. Part of this is achieved by
our generalization gbathmaxinto bidirectional pathmaxThe idea ofpathmaxwas introduced by
Mero [34] as a method for propagating inconsistent valugkénsearch from a parent node to its
children. Pathmax causes tlfevalues of nodes to bmonotonic non-decreasinglong any path
in the search tree. The pathmax idea for undirected statespsa generalized intbidirectional
pathmax(BPMX). BPMX propagates values in a similar manner to pathrbat does this in both
directions (parent to child, and child to parent). BPMX wiout to be more effective than pathmax
in practice. It can easily be integrated into IDA* and, willgltly more effort, into A*. Using
BPMX, the propagation of inconsistent values allows a $etv@scape from heuristic depressions
more quickly.

Trivially, one can create an inconsistent heuristics bingla consistent heuristic and degrading
some of its values. The resulting heuristic will be lessiinfed. Contrary to the perception in the

1. A heuristic isconsistentf for every two states: andy, h(z) < c(z,y) + h(y) wherec(z,y) is the cost of the
shortest path betweenandy. Derivations and definitions afonsistentandinconsistenteuristics are provided in
Section 3.

2. The breadth-first heuristic search algorithm [49], a cetitgr to Frontier A*, does not have this requirement and
works with inconsistent heuristics too.

literature, informed inconsistent heuristics are easydate. General guidelines as well as a number
of simple methods for creating effective inconsistent tstigs are provided. The characteristics of
inconsistent heuristics are analyzed to provide insightts how to effectively use them to further
reduce the search effort.

Finally, experimental results show that using inconsistenuristics with BPMX yields a signif-
icant reduction in the search effort required for many IDARd A*-based search applications. The
application domains used are the sliding-tile puzzle, Rem@roblem, Rubik’s cube, TopSpin and
pathfinding in maps.

The paper is organized as follows. In Section 2 we provid&kdpracind material. Section 3
defines consistent and inconsistent heuristics. Sectioregepts a study of the behavior of A*
with inconsistent heuristics. BPMX is introduced in Sectt® and its attributes when used with
inconsistent heuristics are studied. Methods for creatiegnsistent heuristics are discussed in
Section 6. Extensive experimental results for IDA* and farake provided in Sections 7 and 8,
respectively. Finally we provide our conclusions in Seto

Portions of this work have been previously published [14,421, 45, 46, 47]. This paper sum-
marizes this line of work and ties together all the resultsaddition new experimental results are
provided.

2. Terminology and background

This section presents terminology and background matesed for this research.

2.1 Terminology

Throughout the paper the following terminology is usedstaéte spacés a graph whose vertices are
calledstates The execution of a search algorithm (e.g., A* and IDA*) fram initial state creates
a search graph A search treespans that graph according to the progress of the searchthigo
The termnodeis used throughout this paper to refer to the nodes of thelsésge. Each node in
the search tree corresponds to some state in the state 3jmacsearch tree may contain nodes that
correspond to the same state (via different paths). Thesea#ledduplicates

The fundamental operation in a search algorithm iejpand a nodé.e.,to compute ogener-
atethe node’s successors in the search tree). We assume that@de expansion takes the same
amount of time. This allows us to measure the time complaefithe algorithms in terms of the to-
tal number of node expansions performed by the algorithnolivirsy a given probleni. The space
complexity of a search algorithm is measured in terms of thelyer of nodes that need to be stored
simultaneously.

A second measure of interest is the number of unique statéésath expanded at least once
during the search. The phrasember of distinct expanded statefers to this measure and is
denoted byV.

The terme(z, y) is used to denote the cost of a shortest path froto y. In addition, h(z)
denotes an admissible heuristic framo a goal whileh*(x) denotes the cost of the shortest path
from z to a goal (= ¢(z, goal)).

3. In experiments with IDA*, it is common to report the numlzdrgenerated nodes instead of the number of node
expansions. We follow this practice in our IDA* experiments

3

2.2 Search algorithms

The A* algorithm is a best-first search algorithm [15]. It geeanopen listof nodes (denoted
hereafter a©PEN), usually implemented as a priority queue, which is initiadl with the start state
node. At each expansion step of the algorithm, a node of naihtost is extracted from OPEN and
its children are generated and added to OPEN. The expandkdisiinserted into thelosed list
(denoted hereafter &L OSED. The algorithm halts when a goal node is chosen for expansio

A* employs aduplicate detectioomechanism and stores at most one node for any given state.
Before a node is added to OPEN it is first matched against bB&NDand CLOSED. If a duplicate
node (node with the same state) is found in OPEN then only due nvith the smalleg-value
is kept in OPEN. If the duplicate node is found in CLOSED witkraaller or equal-value, the
newly generated node is ignored. If the node is found in CLD8kh a largerg-value, the copy
in CLOSED is removed and the copy with the smalleralue is added to OPEN.

A* uses the cost functiorf(n) = g(n) + h(n), whereg(n) is the cost of reaching node
from the start node (via the belshownpath) andh(n) is an estimate of the remaining distance
from n to the goal. Ifh(n) is admissible(i.e., its estimate is always a lower bound on the actual
distance) then A* is guaranteed to return a shortest pathisolif one exists [6]. Furthermore, with
a consistent heuristic, A* has been proven to be admissblaplete, and optimally effective [6].
With an inconsistent heuristic, A* is optimal with respezthe number of distinct states expanded,
N, but may re-expand nodes many times. A* requires memonyatiire the number of distinct
states expanded.

IDA* is an iterative-deepening version of A* [22]. It perfois a series of depth-first searches,
each to an increasing solution-cost threshbldl" is initially set toh(s), wheres is the start node.
If the goal is found within the threshold, the search endsessfully. Otherwise, IDA* proceeds to
the next iteration by increasirifj to the minimumf-value that exceedéed in the previous iteration.
The worst-case time complexity of IDA*, even when the givefistic is consistent, i©(N?) on
trees,0(2%V) on directed acyclic graphs [31], atti{ N'!) on cyclic or undirected graphs. The space
complexity of IDA*is O(bd) whereb is the maximum branching factor adds the maximum depth
of the search (number of edges traversed from the root todhB.gDespite these worst-case time
bounds, in practice, IDA* is effectively used to solve maoynbinatorial problems, especially ones
whose state spaces do not have many small cycles. Due to dsstngpace complexity, IDA* can
solve problems for which A* exhausts available memory befanriving at a solution.

2.3 Applications

We now provide an overview of the application domains usdtispaper.

2.3.1 RUBIK’S CUBE

Rubik's cube was invented in 1974 by Erné Rubik of Hungarje Btandard version consists of
a3 x 3 x 3 cube (Figure 1), with different colored stickers on eachhaf éxposed squares of the
sub-cubes, octubies There are 20 movable cubies and six stable cubies in thercehéach face.

The movable cubies can be divided into eight corner cubiéh,ttwee faces each, and twelve edge
cubies, with two faces each. Corner cubies can only move groomer positions, and edge cubies
can only move among edge positions. There are abeud'® different reachable states. In the goal
state, all the squares on each side of the cube are the saoneRxalning redundant moves results

4

Figure 1:3 x 3 x 3 Rubik’s cube

in a search tree with an asymptotic branching factor of ad8u#4847 [24].* Pattern databases
(PDBs, see below) are an effective and commonly-used hieuttiss domain.

2.3.2 TOPSPIN PUZZLE

The (n,r)-TopSpin puzzle has tokens arranged in a ring (see Figure 2). The ring of tokens ca
be shifted cyclically clockwise or counterclockwise. Tio&dns pass through theverse circle
which is fixed in the top of the ring. At any given timdokens are located inside the reverse circle.
These tokens can be reversed (rotated 180 degrees). This tastearrange the puzzle such that
the tokens are sorted in increasing order. TXg4) version of the puzzle is shown in Figure 2 in
its goal position where tokens 19, 20, 1 and 2 are in the rewdrsle and can be reversed. We used
the classic encoding of this puzzle which Hdsoperators, one for each clockwise circular shift of
length0... N —1 of the entire ring followed by a reversal/rotation for thkeas in the reverse circle
[4]. Each operator has a cost of one. Note that thereradbfferent ways to permute the tokens.
However, since the puzzle is cyclic, only the relative lamatof the different tokens matters, and
thus there are onlyn — 1)! unique states. PDBs are an effective heuristic for this leuzz

Reverse
circle

Figure 2: TopSpinZ0,4) puzzle

2.3.3 THE SLIDING-TILE PUZZLES

One of the classic examples of a single-agent path-findiolglem in the Al literature is the sliding-
tile puzzle. Three common versions of this puzzle are3the3 8-puzzle, thet x 4 15-puzzle and
the 5 x 5 24-puzzle. They consist of a square frame containing a satigfbered square tiles,

4. We adopt the same setting first used by Korf [24] where bbtdeéree and 180-degree rotation of a face count as a
legal move.

and an empty position called the blank. The legal operat@rsoeslide any tile that is horizontally
or vertically adjacent to the blank into the blank’s positiorhe objective is to rearrange the tiles
from some random initial solvable configuration into a mantr desired goal configuration. The
state space grows exponentially in size as the number efiti#eases, and it has been shown that
finding optimal solutions to the sliding-tile puzzle is NBraplete [37]. The 8-puzzle contaifi§/2
(181,440) reachable states, the 15-puzzle contains ddtireachable states, and the 24-puzzle
contains almost02° states. The goal states of these puzzles are shown in Figure 3

112 (3]4

11213 5(6[7[8]9

112 415|617 10| 1112 13} 14
314|5 819]10|11 15(16]17(18] 19
6178 12(13] 14| 15 20| 21)22(23] 24

Figure 3: The 8-, 15- and 24-puzzle goal states

The classic admissible heuristic function for the slidiig-puzzles is called Manhattan Dis-
tance. It is computed by counting the number of grid unitg tech tile is displaced from its
goal position, and summing these values over all tiles,usliay the blank. PDBs provide the best
existing admissible heuristics for this problem.

2.3.4 THE PANCAKE PUZZLE

The pancake puzzle is inspired by a waiter navigating a bastaurant with a stack of pan-
cakes [8]. The waiter wants to sort the pancakes orderedZsy ® deliver the pancakes in a
pleasing visual presentation. Having only one free haralotily available operation is to lift a top
portion of the stack and reverse it. In this domain, a statéepermutation of the values..(n — 1).
A state has: — 1 successors, with the” successor formed by reversing the order of the first1
elements of the permutatiod & £ < n — 1). For example, iln = 5 the successors of the goal
state< 0,1,2,3,4 > are< 1,0,2,3,4 >, < 2,1,0,3,4 >, < 3,2,1,0,4 > and< 4,3,2,1,0 >,
as shown in Figure 4. From any state it is possible to reaclodmr permutation, so the size of the
state space ig!. In this domain, every operator is applicable to every stdtnce it has a constant
branching factor of. — 1. PDBs are a well-informed and commonly-used heuristicHisrdomair?

2.3.5 FRATHFINDING

A map is anm x n grid of passable areas and obstacles. There are eight lgossilyements
from a position—four cardinal moves and four diagonal mewvsabject to obstacles and boundary
conditions. Cardinal moves have cost 1, and diagonal moaes bost\/2. Figure 5 shows one
of the maps used in our experiments5(&@ x 512 grid). The goal is, for instance, to move from
point A to point B in the fewest number of moves, traversing only the light ahegeneral, for this
application the best heuristic depends on properties afdineain.

5. The best heuristic known for this puzzle is called glag heuristif16] and uses domain-dependent attributes.

pancake 2

Figure 4: The 5-pancake puzzle

A

Figure 5: Sample game map

2.4 Pattern database heuristics

The efficiency of a single-agent search algorithm is largktyated by the quality of the heuristic
used. An effective and commonly-used heuristic for moshefdpplication domains used in this
paper are memory- or table-based heuristics. The largest bbwork on these heuristics is on
pattern databasefb] (PDBs). PDBs are therefore used in most of our experialesttidies, and the
purpose of this section is to give the background detailsvéver, it is important to note that none of
this paper’s key ideas (inconsistency, BPMX, etc.) depenthe heuristic being a PDB; these ideas
apply to heuristics of all forms. PDB heuristics allow us thigve state-of-the-art performance for
some of our application domains.

PDBs are built as follow$.Thestate spacef a permutation problem represents all the different
ways of placing a given set of objects into a given set of looat (i.e., all the possible states). A
subproblemis an abstraction of the original problem defined by only @bering some of these
objects while treating the others as irrelevant (“don’tear A pattern(abstract state) is a specific

6. We give a definition of PDBs which is specific to permutatitate spaces, since these are used in this paper. How-
ever, PDBs can be built for a much wider set of state spacesbsttactions (e.g., planning domains [9] or other
combinatorial problems [10, 33]).

assignment of locations to the objects of the subproblere.péktern spacer abstract spacés the
set of all the different reachable patterns of a given absfablem.

State
Space Pattern Database
Abstract (distance to the goal pattern)

& IR IE >IN

0 |goal pattern entry

Figure 6: States in the state space are mapped to pattetmes avstract space

Each state in the original state spacealistractedto a state in the pattern space by only con-
sidering the pattern objects, and ignoring the others. gda patternis the abstraction of the goal
state. As illustrated in Figure 6, there is adgebetween two different patterng andp- in the
pattern space if there exist two statgsandss of the original problem such thaf is the abstraction
of s1, po is the abstraction of,, and there is an operator in the original problem space tratects
s1 to so.

A pattern databas€PDB) is a lookup table that stores the distance of eachrpatitethe goal
pattern in the pattern space. A PDB is built by running a diedidst search backwards from the
goal pattern until the entire pattern space is spanned. t& sta the original space is mapped to
a patterrnp by ignoring all details in the state description that arepreserved in the pattern. The
value stored in the PDB fagy is a lower bound (and thus serves as an admissible heumstith)e
distance ofs to the goal state in the original space since the patternesigaan abstraction of the
original space.

Pattern databaselave proven to be a powerful technique for for finding effextower bounds
for numerous combinatorial puzzle domains [24, 5, 26, 10, Rdrthermore, they have also proved
to be useful for other search problems (e.g., multiple secgialignment [33, 48] and planning [9]).

2.4.1 RATTERN DATABASE EXAMPLE

PDBs can be built for the sliding-tile puzzles as illustdate Figure 7. Assume that the subproblem
is defined to only include tiles 2, 3, 6 and 7; all the tiles gmeored except for 2, 3, 6 and 7. The
resulting{2-3-6-7}-PDB has an entry for each pattern containing the distance franpidittern to
the goal pattern (shown in Figure 7(d)). Figure 7(b,d) dspibe PDB lookup for estimating a
distance from a given state S (Figure 7(a)) to the goal (Eigiic)). State S is mapped to a 2-3-6-7
pattern by ignoring all the tiles other than 2, 3, 6 and 7 (Fegl(b)). Then, this pattern’s distance

7. This description assumes all operators have the same thsform cost search should be used in cases where
operators have different costs.

to the goal pattern (Figure 7(d)) is looked up in the PDB. Tepecific, if the PDB is represented
as a 4-dimensional arragDB[][][][], with the array indexes being the locations of tie, 3, 6,
and 7, respectively, then the lookup for state BI¥B[8][12][13][14] (tile 2 is in location 8, tile 3 in
location 12, etc.).

(a) state S (b) the PDB lookug

. 111 9| 5 .

10 1 (15|12

2141413 2

3(6|7]|8 367

(c) goal state (d) goal pattern
. 112 3 . 213
4156 |7 6|7
819(10|11

12| 13| 14| 15

Figure 7: Example of regular PDB lookups

As another example, consider only the eight cubies of thiowelace in Rubik’s cube. A
“yellow face” PDB will store the distances for all configurats of the “yellow” cubies to their goal
location. These distances are admissible heuristics éocdimplete set of cubies.

2.4.2 ADDITIVE PDBs

The best existing method for optimally solving the slidiilg-puzzles usedisjoint additive pattern
databaseg10, 26]. The tiles are partitioned into disjoint sets, ané2B is built for each set. An
x — y — z partitioning is a partition of the tiles into disjoint setstlwcardinalitiesz, y andz. We
build a PDB for each set which stores the cost of moving tles ih the pattern set from any given
arrangement to their goal positions. For each such PDB, sof/éles in the other sets are not
counted. The important attribute is that each move of thelpuzhanges the location ohetile
only. Since for each set of pattern tiles we only count mo¥éiseopattern tiles, and each move only
moves one tile, values from different disjoint PDBs can beealdtogether and the results are still
admissible. Figure 8 presents the twe 8 partitionings for the 15-puzzle and the tée-6 — 6 —6
partitionings for the 24-puzzle that were first used in thetext of additive PDBs [10, 26].

3. Consistent and inconsistent heuristics

Admissibility is a desirable property for a heuristic siritguarantees that the solution returned
by A* and IDA* will be optimal. Another attribute for a heutis is that it can beconsistent An
admissible heuristi& is consistent if, for every two statesandy, if there is a path from: to y,

9

Figure 8: Partitionings and reflections of the tile puzzles

then
h(z) < c(z,y) + h(y) D)

wherec(z, y) is the cost of the least-cost path franto y [15]. This is a kind of triangle inequality:
the estimated distance to the goal frantannot be reduced by moving to a different statend
adding the estimate of the distance to the goal figota the cost of reaching from z. Pearl [36]
showed that restricting to be a neighbor of produces an equivalent definition with an intuitive
interpretation: in moving from a state to its neighbbrmmust not decrease more than the cost of
the edge that connects them. This means thattse functionf(n) = g(n) + h(n) is always
non-decreasinglong any given path in the search graph. We call thisribeotonicit§ of the cost
function f, which is guaranteed whefnis consistent. Note that consistency is a property of the
heuristich while monotonicity is a property of the cost functigiin) = g(n) + h(n). In Section 5
we will show different methods for enforcing monotonicitydaconsistency.

If the graph is undirected then the cost of going frerto y is the same as from to z. Since
the heuristic is consistent we also get that

h(y) < c(y,z) + h(z). 2

Merging equations 1 and 2 yields an alternative definitiancfunsistent heuristics for undirected
state spaces:

|h(z) — h(y)| < c(z,y). (3)

This inequality means that when moving from a parent to addhila search tree, the heurisfic
cannot increase or decrease more than the change in

3.1 Inconsistent heuristics

An admissible heuristié is inconsistentf for at least one pair of statesandy,
h(z) > c(z,y) + h(y). (4)

If y is a successor af, the f-value will decrease when moving fromto . The cost function
£ in this case is referred to aman-monotonicost function.

Similar to the reasoning above, for undirected graphs aisteurs inconsistentf for at least
one pair of states andy

[h(x) = h(y)| > c(z,y). (5)

This means that the difference between the heuristic vaiesandy is larger than the actual cost
of going fromz to y.

8. Pearl [36] used the termonotonicityin a different sense.

10

o (p)

(5)

1 1

@ G
() ()

Figure 9: Inconsistent heuristic

According to this definition there are two types of incoreisties in undirected search graphs;
both are shown in Figure 9. As in all figures in the paper, thalmer inside a node is its admissible
h-value. An edge is generally labeled with its cost.

e Type 1: h decreases from parent to childlhe parent node has f(p) = g(p) + h(p) =
5+ 5 = 10. Since the heuristic is admissible, any path from the staderto the goal node
that passes throughhas a cost of at least 10. Since the edge fgota ¢; has a cost of 1,
f(c1) = g(c1) + h(e1) = 6 +2 = 8. This is a lower bound on the total cost of reaching the
goal throughe;. This is weaker than the lower bound from the parent (whickaigl for all
its children). Thus the information provided by evaluatings “inconsistent” (in the sense
that they do not agree) with the information from its panenin this casef is non-monotonic
when moving fronp to ¢;.

e Type 2:h increases from parent to childNodecs presents another possible case for incon-
sistency, although this case is only inconsistent becawsgraph is undirected. Here the
heuristic increased from 5 to 8 while the cost of the edge wig b. The cost functionf
is still monotonic increasing from (f = 10) to co (f = 14). However the increase of the
h-value is larger than the increase of thealue. Note that since the graph is undirected
there is also an edge from to p. Hence, logicallyp is also one of the children af. In
this second occurrence pf the f-value will decrease from 14 to 12 and is hon-monotonic.
Thus, the historical claim (e.g., of Pearl [36]) that cotesisy is equivalent to monotonicity
is technically correct.

The difference between the two types of inconsistency iomant because later we will show
that the pathmax propagation deals with Type 1 and corresigdtics to be monotonic while our
new bidirectional pathmax (BPMX) described below also slegith Type 2 and can cause the
heuristic to be fully consistent. Note that the “good” babawf consistent heuristics (e.g., that
they do not re-expand nodes) usually comes from the costifum¢ being monotonic.

11

(b)
(aby‘\'\% oal)
P s

Figure 10: Re-expanding of nodes by A*

3.2 Inconsistent heuristics in A* and in IDA*

Assume that a state can be reached from the start state biplmydaths, each with a possibly
different cost. Whenever a node is generated by A*, it is firatched against OPEN and CLOSED
and if a duplicate is found, the copy with the largevalue is ignored. If a consistent heuristic is
used thenf is monotonic and all ancestors of a noddéave f-valuesless than or equal tgf (n).
Therefore, the first time a nodeis expanded by A* (e.g., witlf(n) = K) it always has the optimal
g-value among all possible paths from the stantt®therwise, one of the ancestorsroélong the
optimal path ton must be in OPEN, but itg-value must be smaller thali so it must have been
expanded prior ta. As a consequence, when a node is expanded and moved to CLID&#D
never be chosen for expansion again. By contrast, with sistent heuristics where thfefunction

is non-monotonic, A* may re-expand nodes when they are exheta a lower cost path. A simple
example of this is shown in Figure 10. Nodeandc will be generated when the start nodés
expanded withf (b) = 146 = 7andf(c) = 3+1 = 4. Next, node: will be expanded, and the goal
is discovered with arf-value of 8. Sincé has a lowerf-value, it will be expanded next, resulting in
a lower cost path to. This operation is referred to as theeopeningof nodes ¢ in our case), since
nodes from CLOSED are re-opened and moved back to OPEN. &will, be re-expandedvith a
lower g-cost, and a lower cost path of length 7 to the goal will be tbuBo, with A* the use of
inconsistent heuristics comes with a real risk of many maderexpansions than with a consistent
heuristic. As the next section shows, this risk is not neaslgreat as was previously thought. In a
later section our experiments show that inconsistent fgegican actually speed up an A* search.

IDA*, as a depth-first search (DFS) algorithm, does not penfduplicate detectiof Using
IDA* on the state space in Figure 10, nodeill also be expanded twice (once for each of the paths)
whether the heuristic is consistent or not. Thus, the proldére-expanding nodes already exists in
IDA*, and using inconsistent heuristics will not result inyaadditional performance degradation.

9. In practical applications it is a common practice (knowparent pruning not to list the parent of a node as one of

its children. In such cases the heuristic can be incondiatmording to equation 5 but the correspondfhfunction
is still monotonic. In practice, a full search tree whereoimgistencies are only due to this second case (and the cost
function f is always monotonic) is probably rather rare. Thereforéghanreminder of this paper we will generally
assume that all inconsistent heuristics produce a costifung that is non-monotonic.

10. In an advanced implementation of IDA* (as in any DFS) oae detect whether the current node already appeared
as one of the ancestors in the current branch of the tree. ¥oywanly a small portion of the possible duplicates can
be detected with this method when compared to algorithrmkéep OPEN and CLOSED lists.

12

4. \Worst-case behavior of A* with inconsistent heuristics

This section presents an analysis of the worst-case timelesity of A* when inconsistent heuris-
tics are used.

If the heuristic is admissible and consistent, A* is “optlia terms of the number of node
expansions ([36], p. 85). However, as just explained, ifidgristic is admissible but not consistent,
nodes can be re-opened and A* can do as mardy(a8’) node expansions, wheré is the number
of distinct expanded states. This was proven by Martell].[32

4.1 TheG; family of state spaces

Figure 11:G5 in Martelli’'s family

Martelli defined a family of state spacdss;}, for all ¢ > 3, such thatG; containsi + 1
states and requires A* to d9(2%) node expansions to find the solution [32Z}; from Martelli’'s
family is shown in Figure 11; the number inside a state isétsristic value and the number beside
an edge is its cost. There are many inconsistencies in thjghgr For exampleg(ng, ng) = 1
but h(n4) — h(ng) = 6. The unique optimal path from the starts] to the goal () has the
states in decreasing order of their index,(n4, ..., ng), butn, has a large enough heuristic value
(f(ng) = 14) that it will not be expanded by A* until all possible pathsth@ goal (withf < 14)
involving all the other states have been fully explored. §hwhenn, is expanded, nodess, no
andn; are re-opened and then expanded again. The sequence ofxpaasiens until reaching the
goal, with thef-values shown inside the parentheses, is as follow&3), n1(11),n2(12), n1(10),
n3(13), n1(9), n2(10), n1(8), n4(14), n1 (7), n2(8), n1(6), n3(9), n1(5), n2(6), n1(4). Note that
afterny is expanded the entire sequence of expansions that ocqricedo the expansion of, is
repeated but this time all these nodes are examined via frathgyhn,. Thus, the existence of;
in G5 essentially doubles the search effort required@ar This property holds for each; so the
total amount of work i€ (2%). As we will show below, this worst-case behavior hinges @nstate
space having the properties that the edge weights and tiewatues grow exponentially with the
number of states (as is clearly seen in the definition of Méststate spaces).

13

4.2 Variants of A*

Martelli devised a variant of A*, called B, that improves umpA*'s worst-case time complexity
while maintaining admissibility [32]. Algorithm B maintas a global variablé” that keeps track of
the maximumyf-value of the nodes expanded thus far in the search. Whersictgpthe next node
to expand, iff,,, the minimumf-value in OPEN, satisfieg,, > I, then f,, is chosen as in A%,
otherwise the node with minimumgtvalue among those witli < F' is chosen. Because the value
of F' can only change (increase) when a node is expanded for thdirfies and no node will be
expanded more than once for a given valugptthe worst-case time complexity of Algorithm B
is O(N?) node expansions. However, even with this improvement thestvease scenario is still
poor, further reinforcing the impression that inconsisteis undesirable.

Bagchi and Mahanti proposed algorithm C, a variant of B, bgngfing the condition for the
special case frony,, < F to f,, < F and altering the tie-breaking rule to prefer smaller
values [1]. C’s worst-case time complexity is the same as@(sV?).

4.3 New analysis

Although Matrtelli proved that the number of node expansidngerforms may be exponential in
the number of distinct expanded states, this behavior heer fieen reported in real-world appli-
cations of A*. His family of worst-case state spaces havetsgwi costs and heuristic values that
grow exponentially with the number of states. We now presemew result that such exponential
growth in solution costs and heuristic values are necessarglitions for A*'s worst-case behavior
to occur.

We assume all edge weights are non-negative integers (egigbta of zero are permitted). The
key quantity in our analysis i4, defined to be the greatest common divisor of all the non-zdge
weights. The cost of every path from the start node to nodea multiple ofA, and so too is the
difference in the costs of any two paths from the start node tdherefore, if during a search we
re-opem because a new path to it is found with a smaller cost than aveiy () value, we know
thatg(n) will be reduced by at leagk.

Theorem 1 If A* performsM > N node expansions then there must be a node with heuristie valu
ofatleastLB = A« [(M — N)/NJ.

Proof. If A* does M node expansions and there are oflydistinct expanded states, then the
number of re-expansions ¥ — N. By the pigeon-hole principle there must be a node, Kay
with at least[(M — N)/N| re-expansions. Each re-expansion must decrg@se by at leastA,

so after this process thevalue of K is reduced by at leadiB = A« [(M — N)/N1|. 1
In Figure 12,5 is the start nodek is any node that is re-expanded at g3t/ — N)/N| times

(as we have just seen, at least one such node must eist)the path that resulted from the first
expansion of{, and the upper path t& (via B) is the path that resulted from the last expansion of
K. Denote thef- andg-values along patl, as f;, andg;,, and thef- andg-values along the upper
path asf;,s; andg;.s:, respectively.

Node B is any node on the upper path, excludifigwith the maximumf;,; value (that is, the
maximum f;,; value among any other node on the upper path). Nodes diftomstS and X must
exist along this path because if there were a direct edge ffam/k’, then K would be opened as
soon asS was expanded with g-value smaller thag, (K). HenceK would not be expanded via
L, leading to a contradiction. Nod8 must be one of these intermediate nodes — it canndi be

14

Figure 12: First and last explored path

by definition and it cannot b& because iff;,s:(K) was the largesf;.s; value, the entire upper
path would be expanded befaféwould be expanded via, again a contradiction. Hencg,is an
intermediate node betweéhand K.

h(B) must be large enough to makg,;(B) > fr(K) (becauseX is first expanded vid.).
We will now use the following facts to show thatB) must be at least B:

Juast(B) = giast(B) + h(B) (6)

Juast(B) = fL(K) 7)
fL(K) = go(K)+ h(K) 8)

Giast(B) < Grast(K))

LB < gu(K) — giast(K). (10)
So,
h(B) = fiast(B) — giast(B), by Fact 6

> fL(K) — giast(B), by Fact 7

= 9L(K) + h(K) — giast(B), by Fact 8

> g1(K) — giast(K) + h(K), by Fact 9

> gr(K) — glast(K), sinceh(K) >0

> LB, by Fact 10. |

From Theorem 1 it follows that for A* to d@" node expansions, there must be a node with a
heuristic value of at leagk = [(2Y — N)/NT, and for A* to do/N? node expansions, there must be
a node with a heuristic value of at leaSt« (N — 1).

Corollary 2 Let h*(start) denote the optimal solution cost. If A* performs more thidmode
expansions theh*(start) > LB.

Proof. Since in the proof of Theorem 1 A* expanded nd@defore the goall* (start) must be at
leastf(B), which is at leas.B. |

Corollary 3 If h*(start) < X thenM, the number of node expansions done by A* to find a path to
the goal, is less than or equal t&V + N x \/A.

15

Proof. Using Corollary 2,
Ax[(M —N)/N|=LB < h*(start) < X

which implies
M < N+ N % \/A. |

Corollary 4 Letm be a fixed constant and a graph of arbitrary size (not depending o) whose
edge weights are all less than or equalio ThenM, the number of node expansions done by A*
during a search irG, is at mostN + N «m x (N — 1) /A.

Proof. Because the non-goal nodes on the solution path must eaehblean expanded, there are
at mostN — 1 edges in the solution path and(start) is therefore at most = m x (N — 1). By
Corollary 3,

M<IN+NsAA<SN+Nsxmx(N-1)/A. 1

This is just one example of conditions under which A*'s wetisie complexity is not nearly as
bad as Martelli's bound suggests. The key observationngrifsom the analysis in this section is
that there is an intimate relationship between the numbapdé expansions, the magnitude of the
heuristic values, and the cost of an optimal path to the gblaé number of node expansions can
only grow exponentially if the latter two factors do as well.

5. Pathmax and Bidirectional Pathmax

It is well known that thef-values along any path in a search tree can be forced tadyetonic
non-decreasingThis is simply done by propagating thfevalue of a parent to a child if it is larger.
This technique is usually callgghthmax In this section, the idea behind pathmax is introduced and
then, for undirected state spaces, generalized to a newothetiledbidirectional pathmaxvhich
provides better heuristic propagation.

5.1 Pathmax

Mero introduced algorithm Ba variant of B, that dynamically updates heuristic valuasnd) the
search while maintaining admissibility [34]. This was astd by adding two rules (known as
pathmax rulesfor propagating heuristic values between a node and itdrehi. Like algorithm B
(described in Section 4),’Bias a worst-case time complexity ©f N?). While the pathmax rules
were introduced in the context of algorithm B, they are ajgtile in A* too. The rules propagate
heuristic values during the search between a parent padw its child node:; (where the edge
connecting them costgp, ¢;)) as follows:

Pathmax Rule 1: h(¢;) < max(h(c;), h(p) — c(p,ci)), and

Pathmax Rule 2: h(p) — max(h(p), minciGSuccessors[p}(h(ci) + C(pa Ci)))'n

For Rule 1, we knowh(p) < h*(p) (whereh*(x) denotes the optimal cost to the goal node)
andh(c;) < h*(¢;) becauser is admissible. We also know that (p) < ¢(p, ¢;) + h*(c;) because
one possible path from to the goal goes via;. By combining these facts, it can be inferred that
h*(¢;) > h(p) — c(p,c;). Figure 13 shows how the parent nodeipdates the heuristic values

11. This is our version of pathmax Rule 2. The version in thgial paper [34] is clearly not correct and is probably a
printing error.

16

(p) (p)
(9) ::i>> /// (9) \\\
1 2 1 2
6 &G B @
(©) () (©) ()

Figure 13: Pathmax Rule 1

of the child nodes:; and ¢, according to Rule 1. A consequence of this rule is that théd chi
node inherits thef-value of the parent node if it is larger. Pathmax Rule 1 igmofivritten as
f(ei) := max(f(p), f(c;)). This causes th¢-value to bemonotonic non-decreasinglong any
path. However, a child node can still have a heuristic vaha is larger than that of the parent by
more than the change inand the heuristic can still be inconsistent if the graph iditatted (as
in inconsistency Type 2 presented at the end of Section ®41)). bidirectional pathmax method
(BPMX) described below deals with such cases and correistyie of inconsistency.

(p) (p)
9) :::i> /// 49
1 2 1 2
9 @3 (9 @3
() () () (c)

Figure 14: Pathmax Rule 2

The explanation for Rule 2 (introduced by Mero) is as follows directed state spaces, the
optimal path fromp to a goal must contain one pfs successors (unlegsis a goal), sd*(p) is at
least as large asing, ¢ gyccessorsp) (M(ci) + c(p, ¢;)). Rule 2 correctd(p) to reflect this. Figure 14
shows how the child nodes andc, update the heuristic value of the parent ngd&ccording to
Rule 2. ¢; has the minimalf-value and its value is propagated to the parent. While tha wf
Rule 2 is correct, its practical value is limited. First, onse state spaces (e.g., in undirected state
spaces) there is an edge from stat® its parentz and the shortest path fromto the goal might
pass through state In such cases, using Rule 2 is relevant only i§ actually listed as a child of
p in the search graph. This will be possible only if {hrent pruningoptimization is not used. We
discuss more limitations of Rule 2 in Section 5.4 after weoiditice our generalization of Rule 1 to
bidirectional pathmax.

5.2 Pathmax does not make theg-function monotonic

It is sometimes thought that pathmax Rule 1 actually coewerton-monotonic cost functighinto
a monotonic cost function and, as a consequence, node a@sigp will be preventet? This is not

12. We do not use the term consistent because of our unddirsatihat the cost function can be monotonic but the
heuristic can still be inconsistent as in Type 2 (presente®&iction 3.1) for undirected graphs.

17

correct. Itis true that after applying pathmax the@alues never decrease along the path that was just
traversed. However, thé-values can still be non-monotonic for paths that were rantetrsed yet.

To see this, recall that with a consistent heuristic wheeectist function is monotonic, closed nodes
are never re-opened by A*, because when a node is removeddmEN for the first time we are
guaranteed to have found a least-cost path to it. This iséhieallvantage of a consistent heuristic
over an inconsistent heuristic which has a non-monotorst ftmction where closed nodes can be
re-opened. Pathmax does not correct this deficiency of sistamt heuristics. This was noted by
Nilsson [35] (p. 153) and by Zhou and Hansen [50].

Figure 15: Example where a closed node must be re-openegatitimax

Consider the example in Figure 15 where the heuristic is ssibie but is inconsistent(a) =
99 but A(b) = 1), and f is non-monotonic {(b) < f(a)). The optimal path in this example is
start — a — b — goal, with a cost of 100. A* will expandtart and therc (f=30), at which point
a andb will be in OPEN.a will have f = 99 andb, because of pathmax, will haye= 30 instead
of f = 21. b will be now be expanded and closed, even though the leaspatis tob (via a) has
not been found. A* will then expand the entire set of nodetiandubtred’ before it expanda. At
that pointa will be expanded, revealing the better pattht@nd requiringy and all of the nodes in
T to be expanded for a second time.

5.3 Bidirectional Pathmax — BPMX

Mero’s Rule 1 was defined to propagate values between a panenits child in the search tree.
However, this pathmax rule can be applied from a given noteanother node in any direction
(not necessarily from a parent to its children in a searah) tas long as there is a path framto

y. This can be beneficial in application domains where theckegiraph is undirected, e.g., when
operators are invertible and costs symmetric. Assume ansaiie heuristich whereh(z) >
h(y) + c(x,y). Now, h*(x) < c(z,y) + h*(y) because a possible path frarrto the goal passes
throughy. Thereforeh*(y) > h*(x) — c(z,y) > h(z) — c(z,y) (sinceh is admissible) and we can
apply the following general rule:

h(y) max(h(y), h(z) — c(z,y))- (11)

Pathmax Rule 1 used this general rule from a parent nodecbiltsen. In a search tree if there
is an edge from a childto its parenp then this can be achieved by introducing a new pathmax rule
for children-to-parent value propagation as follows:

18

(c) (c,) (c,) (c,)
(@) (b)

Figure 16: Example of BPMX. The arrows show direction of thepagation of heuristic values.
Propagation occurs along the bold edges.

Pathmax Rule 3: h(p) < max(h(p), h(c) — c(e,p)).

Figure 16(a) shows how Rule 3 can be used. The heuristic lof ¢his propagated to the paremt
andp’s heuristic is increased from 3 to 8.

Our new method, bidirectional pathmax (BPMX), uses Rulesdl3to propagate (inconsistent)
heuristic values in any direction, as described generalgquation 11. Large heuristic values are
propagated along edges but to preserve admissibility weastlthe weight of the edges along
the way. Therefore, updating a node’s value can have a dascaflect (to its neighbors and so
on) as the propagation that started from childcontinues from the parent to the other children
(as shown in Figure 16(b)). The BPMX process stops when weeaat a node whose original
heuristic value is not smaller than the propagated value.bidhd edges in Figure 16(b) correspond
to cases where BPMX further propagates the new heuristieev@p to its children (toco andcs).

By contrast, childz4 cannot exploit BPMX here as its original heuristic value WBashile BPMX
would propagate a value of 6.

Note that Rule 1 only deals with inconsistencies of Type &¢dbed in Section 3.1) and causes
the cost function to be monotonic along the edge. BPMX furthéends this to inconsistencies of
Type 2 and causes the heuristic to be fully consistent.

5.3.1 BPMXFORIDA*

Before discussing BPMX for IDA* we first highlight the follang observation.

Observation: What is important for IDA* is not the exagt-value of a node but whether or not the
f-value causes a cutoff.

Explanation: IDA* expands a node if itsf-value isless than or equal tthe current threshold’
and backtracks if it is larger thdh. Thus, only a cutoff reduces the work performed.

It may not be immediately obvious, but using Rule 1 with IDAGe® not have any benefit.
This is because propagating the heuristic of the papeftith Rule 1) to the childc will cause
f(e) = f(p). Itwill not increase itsf-value above the thresholl (as thef-value ofp was already
less than or equal t6) and therefore will not result in additional pruning.

13. We discuss Rule 2 in the context of IDA* in Section 5.4.

19

Using Rule 3 with IDA* has great potential as it may prune manyes that would otherwise
be generated (and even fully expanded). For example, sagphasthe current IDA* threshold
for Figure 17 is2. Without the propagation df from the left child, both the parent nod¢(p) =
g(p) + h(p) = 0+ 2 = 2) and the right child ((c1) = g(c1) + h(c1) = 1+ 1 = 2) would
be expanded. When using BPMX propagation, the followind @gtur. The left child will have
fle2) = 145 = 6, and with aT" = 2 IDA* will backtrack. However, BPMX will update the
parent'sh-value toh(p) = 4 and its overall cost t¢f (p) = 0 + 4 = 4. This results in a cutoff,
and the search will backtrack from the root node without egenerating the right child (whose
heuristic value can be modified to 3, e.g., in A* as discussdovt).

(p) (p)
= /e
1 2 1 2
B G
(c1) (c2) (C1) (C2)

Figure 17: BPMX. In IDA*, the right branch is not even genexht

An efficient implementation of BPMX for IDA* is provided in gorithm 1. In this implementa-
tion, Rule 3 is applied “for free” when backtracking from aldhFirst, the heuristic of the parept
is updated by Rule 3 (line 20). Then, if tifevalue of the parent becomes larger than the threshold,
the subtree below it is immediately pruned (I and control is passed back to the parent.dh
this case, the other children pfare not generated.

An alternative exhaustive implementation will not stopiaeR21 but will continue to generate
all children ofp and calculate their heuristics. This may result in propgagaiigher heuristic values
by Rule 3 to the parent and increase the chance of further pruning ancestops ©he drawback
of this implementation is that parepts fully expanded? We have experimented with this variant
in most of the domains studied in this paper. However, noggaiare provided and the “lazy”
approach of stopping as soon as a cutoff occurred condistartperformed the exhaustive variant.
Therefore, we only report experimental results with theg hariant.

A reminiscent idea of BPMX for propagating heuristic vallegween nodes was introduced
in the context of learning heuristics in DFS searches [3]e diiference is that unlike BPMX the
“learning algorithm” of that work requires a transposititle.

5.3.2 BPMXFORA*

Due to its depth-first nature, BPMX propagation is easily lampented in IDA*, and values are
propagated naturally between children and their pareniscddtrast, in A* BPMX updates are
more difficult as nodes that might be updated may need to hiewved from OPEN or CLOSED.

BPMX can be parameterized with the maximum depth that a sisuxialue will be propagated.
BPMX(1) is at one extreme, propagatihgipdates only among a node and its children. BPMX(
is at the other extreme, propagatihgipdates as far as possible.

14. This process can be extended and we can perfdrfiopakahead search to find large heuristic values.

20

Algorithm 1 IDA* with BPMX (“::” adds an element to a list)

01: functionI D A*y,,,.(initial_nodes) > Returns the optimal solution
02: threshold «— h(s)

03: repeat

04: Goal Found <— DF Syymz(s, NULL, 0, Path, threshold, h)

05: threshold «— next_threshold()

06: until Goal Found
07: returnPath
08: end function

09: boolean functiorD F' Sy, (nodep, previousmovepm, depthg, List Path,
integerthreshold, heuristicvalue&h,)

10: hy <— h(p)

11: if (hp + g) > threshold then return false

12. if p = goal_node then return true

13: for each legammovem; do

14. if m; = pm ™! then continue > Parent pruning
15: generate child; by applyingm; to p

16: if DF Sppma(ci, mi, g + c(p, ¢;), Path, threshold, h,,) = true then

17: Path «+— m,; :: Path

18: return true

19: else

20: hy <— max(hy, he, — c(ci, p)) > Rule 3

21: if (hy + g) > threshold then return false > Backtrack ASAP
22: end if

23: endfor

24: return false
25: end function

BPMX(1) can be implemented efficiently if the BPMX computatinappens after all children
of a node have been generated (and checked for duplicatePEN@nd CLOSED) but before
they are added/moved back to OPEN and/or CLOSED. Assumeathatlep is expanded and
that itsk childrency, ca, .. ., ¢ are generated. References to these nodes can be saveddor fas
manipulation in the following steps. Le},.. be the node with the maximum heuristic value among
all the children and leb,,.. = h(cmaz)- In addition, assume that each edge has unit cost and is
undirected.h,,,,, can be propagated to the parent node by decreasing it by simg (@ule 3) and
then to the other children by decreasing it by one again guRBule 1). Thus, each of the other
children¢; can have a heuristic of

hppax(¢;) = max(h(c;), h(p) — 1, hyaz — 2).

After all these nodes have their value updated, then thepacgle is inserted in CLOSED (with its
new f-value) and all the children are inserted (or changed) in @R&th their new f-values).

21

Pseudocode for an efficient implementation of A* with BPMX{4& shown in Algorithm 2.
There is a single data structure for OPEN and CLOSED whichmicit in calls for looking up
nodes. In our actual implementation most lookups are catheztiuce overhead.

BPMX(d) with d > 1 starts at a new node that was just generated and continuespagate
h-values to its generated neighborhood (hodes on OPEN andSED)as long as thi-values of
nodes are being increased. There are a number of possiblenaptations and they all require
finding and retrieving nodes from OPEN and CLOSED. Obvigusiis will incur some (even all)
of the following possible overheads associated with BP¥)X{ith d > 1) within the context of
A*:

(a) performing lookups in OPEN and/or CLOSED (when lookiagrieighbors),

(b) ordering OPEN nodes based on their néwalue (when these values change), and

(c) computational overhead of comparing heuristic values assigning a new value based on
the propagations.

These costs are the same as the costs incurred when pegoAninode expansions. In
BPMX(d) the propagating of heuristic values can result in the edeit of multiple expansions
(re-openings). The propagation (and re-openings) must¥dall children of a node until the depth
d parameter is satisfied. As such, we regard BPMX witty 1 as an independent search process
rather than a small optimization on top of the main searchr &mperimental results show that
node expansions that occur during the BPMX process havethe sost as A* node expansions.
Therefore, in the remainder of the paper we will not distisgubetween A* and BPMX{ > 1)
expansions. Wheii = 1 the overhead is not included in the count of node expansanig,in time
measurements.

A natural question is how to determine which value for pat@méis best. It turns out that no
fixed d is optimal in the number of node expansions for all graphsil&\particulard can produce
a large reduction in the number of node expansions for a gitae space, for a different state space
it can result in arO(N?) increase in the number of node expansions.

1 1 1 8
O—0—E—06B—0O
@ ® © @ (oa

Figure 18: Worst-case example for BPMx]

Figure 18 gives an example of the worst-case behavior of BRM)X The heuristic values
gradually increase from nodego d. When nodé is reached, the heuristic can be propagated back
to nodea, increasing the heuristic value by 1. When neds reached, the heuristic update can
again be propagated back to nodemda. In general, when thé”" node in the chain is generated
a BPMX update can be propagated to all previously expandddsioOverall this will result in
14+2+3+---+ N —1= O(N?) propagation steps with no savings in node expansions. This

15. This is true for PDB heuristics (inexpensive to compuiti)wever, this might not be true in cases where the heuristic
calculation requires a large amount of time.

22

Algorithm 2 A* with BPMX(1) (assumes symmetric edge costs)
01: funCtionAzpmm(l)(start, goal)

02: push(start)

03: while (queue is not empty)

04: current «— pop best node from queue

05: if current is goal return extractPathk{art, goal)

06: neighbors +— generateSuccessatg(rent)

07: BestH «— 0 > stores parent h-cost (from pathmax)
08: for eachmeighbor 1..i in neighbors > cache these lookups for later use
09: BestH +— max(BestH, lookupHqeighbor) — c(current, neighbor))

10: end for

11: storeH¢urrent, max(lookupHurrent), BestH))
12: for eachneighbor 1...1 in neighbors

13: FEdgeCost = c(current, neighbor)

14: switch (getLocatiom{eighbor))

15: case ClosedList:

16: if (lookupH(eighbor) < BestH — EdgeCost) > BPMX or PMX update
17: storeHteighbor, BestH — EdgeCost)

18: end if

19: if (lookupGeurrent) + EdgeCost < lookupGeighbor)) 1> Found shorter path
20: setParent{eighbor, current)

21: storeGeighbor, lookupGeurrent) + EdgeCost)

22: reopengeighbor)

23: end if

24: case OpenList:

25: if (lookupGeurrent)+FEdgeCost < LookupGfeighbor)) > Found shorter path
26: setParent{eighbor, current)

27: storeGfeighbor, lookupGeurrent)+EdgeCost)

28: updateKeweighbor) > Re-sort OPEN
29: end if

30: if (BestH — EdgeCost > lookupHeighbor)) > BPMX or PMX update
31: storeHfeighbor, BestH — EdgeCost)

32: updateKeyteighbor)

33: end if

34: case NotFound: > also applies BPMX or PMX update
35: addOpenNodegighbor, lookupGeurrent)+FEdgeCost,

36: mazx(h(neighbor, goal), BestH — EdgeCost))

37: end switch

38: end for

39: end while

40: return nil
41: end function

23

provides a general worst-case bound. At most, the entirefggeviously expanded nodes can be
re-expanded during BPMX propagations, which is what hapene.

Figure 19: Best-case example for BPMX]

By contrast, Figure 19 gives an example of how BPM3(propagation can be effective. As-
sume node is the start node. Itis expanded and its three childbendndgoal) are generated with
f-valuesf(b) =4, f(c) = 3and f(goal) = 50. Nextc is expanded and is generated. If BPMX
is not activated (left side), then all nodes in the subtregeuh with f < 50 will be expanded;
only thengoal is expanded and the search terminates. Now, consider thentsse BPMX¢o) is
activated (right side). While generating nodéts heuristic value is propagated with BPMX &p
then toa and then ta raising thef-value ofb to 50. Note that we can infer that the entire subtree
belowb will have f > 50. In this casef (b) = f(goal) = 50 and, assuming ties are broken in favor
of low h-values,goal is expanded and the search halts after expanding only tioaesn

5.4 Pathmax Rule 2

We have just seen the usefulness of Pathmax Rules 1 and 3.dl4eroreated Rule 2 for children-
to-parent value propagation [34].

Rule 2: h(p) — max(h(p), minciESucessors[p](h(Ci) + C(pa CZ)))
We now discuss the properties of Rule 2.

5.4.1 RULE 2 WHEN IDA* 1S USED

Similar to Rule 1, there is no benefit for using Rule 2 on topA1 in undirected state spaces as
no pruning will be caused by it. Assume that ngdeas childrern:y, cs . .. ¢, and that the parent of
p is a (as shown in Figure 20). Assume also that thatproduced the minimaf-value among all
the children. We show that neithemor a can benefit from Rule 2 when appliedgavhen Rules 1
and 3 are used.

24

Figure 20: Example for Rule 2

e p cannot benefit from Rule 2: Assume thap is not causing a cutoff in the search. In this
case, the search proceeds to the children. Now, if the mmirohild (c,,) causes a cutoff
then all the other children must also cause a cutoff. WhemguRule 2, then all the children
are generated in order to find the one with minimum cost. Eitfsgy, using Rule 2 or nogll
children are generated and Rule 2 will have no added valug. for

e a cannot benefit from Rule 2: Assume that Rule 2 was activated and that wefsgt(p) =
f(em). Now, due to the activation of Rule 1 (ordinary pathmax) fhealue is monotonically
increasing along any path of the search tree. Thus,(p) > f(p). If frew(p) = f(p)
then there is no change in the course of the search by apdRuhg 2. Now, consider the
case wherg,,..,(p) > f(p). Recall that for Rule 2 to work we must also lisas one of the
children ofp. There are now two cases. The first casg € a) is thata produced the minimal
f-value among the children. Now, if we apply Rule 3 we get that,(a) = h(p) —c(a,p) =
h(cm) + c(p, em) — c(a, p) = h(cm) + ¢(p,a) — c(a, p) = h(a). Thus, there is no change to
the h-value ofa. The second case,{ # a) is that another child was chosen as the minimum,
meaning thati(a) + c(a,p) > h(cm) + c(em,p). Now, if we apply Rule 3 we get that
hpew(a) = h(p) — c(a,p) = h(cm) + ¢(p, em) — c(a,p) < h(a) + c¢(a,p) — c(a,p) = h(a).
Here applying Rule 3 can only decrease khealue ofa and it is again unchanged.

Thus,a cannot benefit from applying Rule 2 either and Rules 1 and 3wdfieient to obtain
all the potential benefits.

5.4.2 RILE 2 WHEN A* IS USED

Assume that we are running A* and that ngdis now expanded. Its children are added to OPEN
while p goes to CLOSED. If after applying Rule 2, ifsvalue increases then it will go to CLOSED
but with a higherf-value because its newvalue is larger than its original-value. This might
affect duplicate pruning in the future if nogias reached via a different path.

Furthermore, Rule 2 is just a special cake<{ 1) of a k-lookahead search where values from
the frontier are backed up to the root of the subtree. In >ilar propagation is used for heuristic
learning in LRTA* [23] when repeated search trials take plad his is also applicable for strict
consistent heuristics.

Based on all the above, we did not implement Rule 2 in our exyrts and focus on Rules 1
and 3 which are the core aspects of BPMX value propagatidmindbnsistent heuristics.

25

6. Creating inconsistent heuristics

As illustrated in the quote frorArtificial Intelligence: A Modern Approacf88] given earlier, there
is a perception that inconsistent admissible heuristieshard to create. However, it turns out that
this is not true. The following examples use PDB-based kgcsi (used in many of the applications
in this paper) to create inconsistent heuristics. Howeweitar ideas can be applied to other heuris-
tics. We show examples of inconsistent heuristics for padiiriig in explicit graphs in Section 8.

It is important to note that we can trivially make any heueigtconsistent. For example, with a
table-based heuristic (such as a PDB) one can randomlyidetdatries to 0. Of course, introducing
this inconsistency results in a strictly less informed Fetiar. In this section we give examples of
inconsistent heuristics which provide more informed valtiat can benefit the search.

6.1 Random selection of heuristics

Many domains have a number of heuristics available. Whemgusnly one heuristic the search
may enter a region with “bad” (low) estimation values (a ligiar depression). With a single fixed
heuristic, the search is forced to traverse a (possiblye)gogrtion of that region before being able
to escape from it.

A well-known solution to this problem is to consult a numbg&heuristics and take their max-
imum value [5, 10, 18, 19, 24, 26]. When the search is in a regidow values for one heuristic,
it may be in a region of high values for another. There is agéfdor doing this, as each heuristic
calculation increases the time it takes to compi(te). Additional heuristic consultations provide
diminishing returns in terms of the reduction in the numbienarle expansions, so it is not always
recommended to use them all.

Given a number of heuristics one could select which heartstiuserandomly Only a single
heuristic will be consulted at each node, and no additionad bverhead is needed over a fixed
heuristic. Random selection between heuristics introslumere diversity to the values obtained
in a search than using a single fixed selection. The randoectg@t of a heuristic will produce
inconsistent values if there is no or little correlationvbeen the heuristics. Furthermore, a random
selection of heuristics might produce inconsistenalues even if all the heuristics are themselves
consistent.

When using PDBs, multiple heuristics often arise from eitplg domain specific geometric
symmetries. In particular, additional PDB lookups can bdgmmed given a single PDB. For ex-
ample, consider Rubik’s cube and suppose we had the “yelioe’fPDB described previously in
Section 2.4.1. Reflecting and rotating this puzzle will éeaimilar lookups for any other face with
a different color (e.g., green, red, etc.) since any twodage symmetrical. Different (but admissi-
ble) heuristic values can be obtained for each of these jmokuthe same PDB. As another exam-
ple, consider the main diagonal of the sliding-tile puzAay configuration of tiles can be reflected
about the main diagonal and the reflected configuration shtheesame attributes as the original
one. Such reflections are usually used when using PDBs falittiag-tile puzzle [5, 10, 11, 26]
and can be looked up from the same PDB.

In recent work, a learning algorithm was used to decide whewitch between two (or more)
heuristics [7]. A classifier was used to map a state to a heyreonsidering the likely quality of
the heuristic estimate and the time needed to compute the.va@he resulting search has inconsis-
tencies in the heuristic values used.

26

6.2 Compressed pattern databases

There is a tradeoff between the size of a table-based heufssich as a PDB) and the search
performance. Larger tables presumably contain more ddtaiformation, enabling more accurate
heuristic values to be produced.

Researchers have explored building very large PDBs (pgssilen on disk) and compressing
them into smaller PDBs [11, 12, 27, 39, 2]. A common compogsklea is to replace multiple PDB
entries by a single entry (often exploiting a locality prapeso that the values of the entries are
highly correlated), thereby reducing the size of the PDBpi&Eserve admissibility, the compressed
entry must store the minimum value among all the entriesithatreplacing. This is calletbssy
compressiomecause some state lookups will end up with a less effectiuégtic value. It has been
shown that if the values in PDBs are locally correlated, timarst of the heuristic accuracy will be
preserved [11]. Thus, large PDBs can be built and then casspceinto a smaller size with little
loss in performance. Such compressed PDBs are more infaitmeduncompressed PDBs which
use the same amount of memory [11].

a b c¢ d
|4|7<|7|
46 |

y

X

Figure 21: Inconsistency of a compressed pattern database

The compression process may introduce inconsistencyhetbéuristic, since there is no guar-
antee that the heuristic value of adjacent states in thelsemace will lose the same amount of
information during compression. For example, consideB® in Figure 21 and assume that it is
consistent. Assume thatandc are connected by an edge with costlofDuring compression
might be mapped t@ in the abstract space, ando y. To preserve admissibility; andy must con-
tain the minimum value of the states mapping to those looatiblow states andc are inconsistent
in the abstract space (the difference between their hisgrigt2) is bigger than the actual distance
between them (=1)).

6.3 Dual heuristic

The concept ofluality anddual heuristican permutation state spaces was introduced by Zadtavi
al. [14, 44, 45]. Such heuristics may produce inconsistentisi@uvalues. The papers provide a
detailed discussion of these concepts. Here we provideguifidetails for our purposes.

In permutation state spaces, states are different periongadf objects. Similarly, any given
operator sequence is also a permutation (i.e., transferpermutation into another permutation).
For each state, a dual state? can be computed. The basic definition is as follows. t.¢e the
permutation that transforms staténto the goal. Thelual state ofs (labeled ass?) is defined as
the state that is constructed by applyindo the goal. Alternatively, ifD is the set of operators that
transfers to the goal, then applyin@ to the goal will reachs?.

27

Figure 22: Dual states of the parent and its children

This dual states? has the important property that it is the same distance flwengbal ass.
The reason is that any sequence of operators that mapshe goal also maps theoal to s?.
Since operators are reversible in permutation state spmesequence can be inverted to nsép
to the goal. Efficient methods have been suggested for dgritie dual state? given a description
of states [45]. Since the distance to the goal of both states is idehtany admissible heuristic
applied tos? is also admissible fos and can be used as a heuristic for it. For a statée term
dual lookupis used when looking ug? in the PDB. When moving from a parent state to a child
state, performing a dual lookup may produceraonsistenvalue even if the heuristic itself (in its
regular form) is consistent. The explanation for this is@ks. In a standard search, a parent
statep, and any of its childrer;, are neighbors by definition. Thus, a consistent heurististm
return consistent values when appliechtandc;. However, the heuristic values obtained $6rand
¢4 may not be consistent becauseandc? are not necessarily neighbors (as illustrated in Figure
22)16

In general, there are two easy ways to generate inconsysfena given domain: 1) the use of
multiple different heuristics and 2) using a heuristic thas some values missing or degraded. We
provided some examples in this section. This list is not extize and the above examples are by
no means the only ways of creating inconsistent heuristics.

6.4 Inconsistent versus consistent heuristics

Besides the potential di-value propagation, inconsistent heuristics have otheibates which
might reduce the number of node expansions in a search whepared to consistent heuristics.
This section addresses these attributes.

Most of the previous work on admissible heuristics mainlgeantrated on improving the qual-
ity of the heuristic assessment. A heurigticis considered to be more informed (better quality) than
ho if it typically returns a higher value for an arbitrary st§d&]. A de factostandard usually used
by researchers is to compare the average values of a giveistiieaver the entire domain space
or over a large sample of states of the domain (e.g., [10, 412@]). Korf, Reid and Edelkamp
(denoted as KRE) introduced the notion of thesrall distributionof heuristic values [28, 29]. De-
fine p(v) to be the probability that a random state of the state spatbavie a heuristic value af.
Likewise, defineP(v) to be the probability that a random state will have a hewrigiueless than

16. This phenomenon is explained in detail in the origingdgra [14, 44, 45]. An example is provided in the Appendix
of this paper.

28

Consistent | Inconsistent
expanded Q@
generated Q 4

not generated O

Figure 23: Consistent versus inconsistent heuristics.eNade marked with theit-value.

or equal tov. KRE suggested using the distribution of values from a Istiarfunction to measure
the “informedness” of the function. Doing this for admidsibeuristics will typically show that if
a heuristic is more informed then the distribution of valuelt be higher, as will be the average
value. We show in Section 7.2.1 that, when inconsistentistts are used, this distribution is not
enough and there are more attributes to consider.

KRE also introduced a formula to predict the number of nodeasgions by IDA* on a single
iteration when using a consistent admissible heuristic 228

d
N(b,d,P) =Y bP(d—1),
=0

whereb is the brute-force branching factatis the depth of the search (the IDA* threshold), dnib
the heuristic distribution. KRE showed thatf{x) is defined in a particular way (the “equilibrium”
distribution) then the number of nodessuch thatf (n) < d is equal toN (b, d, P) in the limit of
larged. We call these nodes theodes with potential to be expandedpotentialnodes in short.
KRE then proved that with consistent heuristics all potdntodes will eventually be expanded by
IDA*, Assume thatn is a potential node. Since the heuristic is consistent, angsora of n must
also havef(a) < d and is also a potential node. Then, by induction they shoWwatthe entire
branch from the root ta will be expanded since all the nodes of the branch are paterdies.

For inconsistent heuristics the behavior is different. &@otential node:, there may exist an
ancestor with f(a) > d. Once IDA* visits this node, the entire subtree below it isned and
will not even be generated. A potential node will actuallydx@anded only ifill its ancestors are
also potential nodes. This is guaranteed for consisterrigdties but not for inconsistent heuristics.
Thus, for an inconsistent heuristic the number of potemt@es approximated by (b, d, P) is
only an upper bound on the number of node expansibns.

Assume a given PDB and compare, for example, the dual (ororapdbokup of this PDB
to the regular consistent lookup of the same PDB. Since lyxtiet same PDB is used, all these
heuristics (which perform a single lookup) will have the saowerall distribution of values and the
same number of potential nodes. However, as our experifmestdts below show, fewer nodes are
expanded in practice. The explanation for this is shown gufé 23. Observe that in both cases
there is the samék-value distribution for each level of the tree. In particuta depth two there are

17. Zahaviet al. developed an alternative formula to predict the number derexpansions [42, 43]. One of its benefits
is that it provides accurate predictions for inconsistentristics too (as opposed to an upper bound).

29

three nodes witth-value of 3, and two single nodes withvalues of 4 and 6, respectively. In the
case of a consistent heuristic (left side of the figure), & durrent IDA* threshold is 5, all three
nodes at depth two with-value of3 havef = g + h = 2 + 3 = 5 and will be expanded. They
are all potential nodes, and since the heuristic is comgisted all their ancestors are also potential
nodes, they are all expanded. The right subtree of the rgouised because thévalue at level 1
isf=g+h=14+5=6>5.

In the case of an inconsistent heuristic (right side of ther&éj only one node at depth two will
be expanded (the leftmost node). The node wivalue of 6 will be generated but not expanded
because itg-value is8 and that exceeds the threshold. Due to BPMX, its value wiptopagated
to its parent by Rule 3 and the parentsvalue will be changed to 5. Thé-value of the parent
will be changed to 6 and the search will backtrack withoutnegenerating the rightmost child (a
potential node witth = 3).

7. Experiments with IDA*

This section presents results from different domains thatiate the benefits of inconsistent heuris-
tics and BPMX when used with IDA*. All experiments were perfeed on an Intel P4 3.4 GHz with
1 GB of RAM.

7.1 TopSpin

We experimented with thel{,4)-TopSpin puzzle which hak7! = 3.56 x 10'* states. A PDB of
the leftmost 9 tokens was built, representing a patternespfit? x 16... x 9 = 8.82 x 10°.18

Given a PDB,17 different symmetric (geometrical) lookups can be derivEédr example, a
PDB of 9 consecutive tokeng(. .. 9]) can also be used as a PDB[2f .. 10], [3... 11], etc., with
an appropriate mapping of tokens. Since all the values #RBIB were smaller than 16, each entry
is encoded in 4 bits. Hence the PDB only requires 247 MB ofspac

Some pairs of operators are commutative, leading to the staee When the search is done
using IDA*, many duplicate nodes can be avoided by forcing temmutative operators to be ap-
plied successively in only one order. For example, the dpethat reverses locatior{s, 2, 3,4) is
not related to the operator that reverses locatidnis12, 13, 14). By forcing the first one to always
be tried before the second eliminates unnecessary duphciat the search tree. This operator or-
dering decreases the number of generated nodes by an omntkgaftude and is applied across all
our experiments.

Table 1 presents the average number of generated nodes enagi@time in seconds needed
for IDA* to solve 1,000 random instances with different PDi®kup strategies. The first column
(Lookups) shows the number of PDB lookups* 1) that were performed (and maximized). The
following PDB-based heuristics were used:

e Regular: A fixed set ofi PDB lookups is chosen and used at every node in the searate Sin
all nodes maximize over the same lookups, the heuristicrisistent.

18. Since this puzzle is cyclic and the data is stored in aliaeray, we can assume that token number 1 is always in the
leftmost position. Thus, for the implementation, both nensbabove can be divided by 17.

30

e Random: Of the 17 possible lookupsare randomly chosen (and maximized) at each node
in the search. Since consecutive nodes havie ealue that is computed differently (possibly
n different lookups), the resulting heuristic is inconsigte

¢ Random + BPMX: The heuristics obtained by combining (inéstest) random lookups are
updated with BPMX.

When multiple heuristics exist and IDA* is used then thedaling implementation enhance-
ment can save a considerable number of potential heur@tkups. For a node the heuristic
lookup should determine whethéfn) < T' (does not exceed the threshold, meaning thsiould
be expanded) or wheth¢gi(n) > T (meaning that: is pruned). When maximizing over multiple
heuristics, instead of evaluating all the heuristiesh@ustiveevaluation) the computation can stop
when one of the heuristics exceefis(lazy evaluation); further lookups are not needédLazy
evaluation is not relevant for A* as the maximum needs to beutated and stored. In addition, for
IDA* too, for nodes that are expandeal| heuristics are looked up.

When BPMX is used, there is a benefit to always using exhaustraluations (similar to the
variant described in Section 5.3.1). Exhaustive evalaatisill often yield higher values than lazy
evaluations, perhaps leading to additional BPMX cutoffigitfbr values being propagated). Ex-
periments on the performance of lazy and exhaustive evahsahave been done for many of the
domains used in this research. In general for nodes whergyaelaluation occurs, the time per
node can drop significantly, as much as by a factor of threermesof our experiments. By contrast,
exhaustive evaluations reduced the number of generatezbnbdt this reduction was rather small
and never more than 20%. All the results reported in this paped lazy evaluations.

The first row in Table 1 corresponds to the benchmark caseaendrdy one lookup is allowed.
The number of generated nodes is 40,019,429. Randomlytisgler single lookup reduces this
number by a factor 25.5 to 1,567,769 nodes. Adding BPMX te filmither reduces the number of
generated nodes to 564,469—an improvement factor of 7@Gthe benchmark. This improvement
was achieved with a single PDB lookup. The regular fixed sieleenethod needs more than four
different lookups (from the same PDB) to produce a heuristisimilar quality as the one using
the random selection with BPMX (see Row 4). This is achievétl wotentially three additional
lookups, increasing the computational cost per node.

Adding more lookups provides diminishing returns. Usingwnbokups provide a diversity of
heuristic values and the improvement factor of an additimakup (regular or random) decreases.
All the selection methods converge to the case of using albékKups. The random selection of
lookups converges faster. For a fixed number of potentidtups, the random selection strategy
always outperforms the fixed strategy. When more lookupgassible, the relative advantage of
the random selection decreases because the fixed seldstidmea a diversity of values. When one
is interested in a time speedup, then many variants of bethhetiular (e.g., consulting all of them)
and random lookups will provide the best time results of lyg&dB seconds. In practice, of course,
all 17 symmetric lookups are possible and there is no reagbtoruse them all.

7.2 Rubik’s cube

Rubik’s cube has 20 movable cubes (cubies); 8 are cornerdare edges. The heuristic for
Rubik’s cube is usually obtained by taking the maximum oliezé PDBs (one for the eight corners

19. One can try to order the heuristics to increase the chafrgetting a cutoff earlier [18].

31

Regular Random Random + BPMX

(Consistent) (Inconsistent) (Inconsistent)

Lookups Nodes| Time Nodes| Time| Nodes| Time
1 40,019,429| 53.129| 1,567,769| 2.857 || 564,469 1.032
2 6,981,027| 10.686| 404,779| 0.865| 279,880| 0.622
3 1,787,456| 3.213|| 224,404| 0.555| 187,797 0.480
4 651,080| 1.394| 157,710| 0.443| 143,051| 0.411
5 332,642 0.835| 123,882| 0.388| 116,779| 0.373
6 208,062| 0.601| 103,377| 0.356| 99,653| 0.349
7 148,003, 0.484 89,698| 0.337|| 87,596| 0.332
8 116,208| 0.422 79,911| 0.324| 78,609 0.321
9 95,863| 0.382 72,504| 0.317| 71,709 0.315
10 81,749| 0.354 66,690| 0.311| 66,184 0.310
11 71,451 0.335 62,020| 0.306| 61,682 0.306
12 64,227| 0.322 58,119| 0.304|| 57,947| 0.304
13 58,455| 0.312 54,906| 0.302| 54,773 0.303
14 53,926| 0.307 52,145| 0.301|| 52,079| 0.302
15 50,376| 0.303 49,760| 0.302|| 49,736 0.302
16 47,784 0.303 47,688| 0.301|| 47,663 0.303
17 45,849 0.304 45,848 | 0.303|| 45,849| 0.304

Table 1: Consistent and inconsistent heuristics for Top®&pi,4) (IDA*)

and two covering six edges [24]). The 8-corner PDB cannotdael in an inconsistent manner (all
the corners are always examined; hence there are no syramatrd the dual lookup is identical
to the regular lookup). This section reports results usingteaige PDB. There are 24 lines of
geometrical symmetries which arise from different waysaihting and reflecting the cube. For
the 7-edge PDB, each of these symmetries considers a diffseeof edges, resulting in a different
PDB lookup. Similar tendencies were observed in other exyents (based on PDBs built from a
mix of edge and corner cubies).

Table 2 shows the average number of generated nodes ancethgavunning time (in seconds)
over the set of 100 Rubik’s cube instances with goal distafidel used by Felnest al.[14]. The
Lookups column gives the number of PDB lookups that were tsedmpute the heuristic value
for a state. Lazy evaluation was used whenever possible.

The following PDB-based heuristics were used:

e Regular: The regular PDB lookup. This heuristic is consisbecause the same set of cubies
is used for the PDB lookup of both parent and child nodes.

e Dual: For each node, the dual state is calculated and is ¢bogen the PDB. This will pro-
duce inconsistent heuristic values because the dual lookilye parent may consult different
cubies than the dual lookup of the child.

32

| Row || Lookups| Heuristic | Nodes | Time |

One PDB lookup
1 1 Regular 90,930,662 28.18
2 1 Dual 19,653,386, 7.38
3 1 Dual + BPMX 8,315,116| 3.24
4 1 Random 9,652,138, 3.30
5 1 Random + BPMX 3,829,138, 1.25
Maxing over multiple PDB lookups
6 2 2 Regular 13,380,154 4.91
7 2 Regular + Dual + BPMX| 2,997,539| 1.34
8 2 2 Random + BPMX 1,902,730| 0.83
9 4 4 Regular 1,053,522| 0.64
10 4 4 Random + BPMX 1,042,451| 0.64

Table 2: Consistent and inconsistent heuristics for Rslikbe (IDA*)

e Random: Randomly select one of the different 24 possiblensgtric PDB lookups for the
given node. This is inconsistent because the set of cubdésith used for the parent are not
necessarily the same as for the child.

The table shows that single random and dual lookups perfomehrbetter than a single regular
lookup. In addition, BPMX further improves the results. Thal lookup is much more diverse than
the regular lookup and there is much less correlation betweaecessive lookups [14]. Therefore,
the search is not stuck in a region with low heuristic valugdraquently happens with regular
lookups. A random lookup with BPMX is much faster than eitbee regular lookup (by a factor
of 24) or one dual lookup with BPMX (by a factor of 2.5).

Rows 6-10 show the results of maximizing over 2 and 4 reguidrrandom lookups. It is
interesting to see that one random lookup with BPMX outpenfotwo regular lookups by a factor
of 3.5 in the number of generated nodes and by a factor of 3tine. Two random lookups are
better than a regular and a dual lookup because it has a Uefesity of values (see below). When
four lookups are allowed, the values obtained using ourflegular lookups are diverse enough that
there is no advantage to taking four random lookups.

7.2.1 DYNAMIC DISTRIBUTION OF HEURISTIC VALUES

We claimed above that part of the reason for the success ocansistent heuristic is the diversity
of values that get introduced into the search. This secti@mts to give greater understanding to
this claim.

It is easy to analyze a domain and produce a graph showingdtribdtion of values produced
by a heuristic. However, the obvious question to ask is wdrdthis static (pre-computed) distribu-
tion reflects the values that are actually seen during alse@rdnterest is thelynamic distribution
of values generated during a search. Distinguishing betveéstic and dynamic distributions of
heuristic values is not new; it has been previously used jpdagx why the maximum of several
weak heuristics can outperform one strong heuristic [18].

33

60 | | =O-= Regular Lookup
| | *9¢+ Dual Lookup
=} Random Lookup

=== = Static Distribution

50+

40~

% Nodes

30
20+

10

12

Heuristic Value

Figure 24: Rubik’s cube heuristic distributions

Figure 24 shows the dynamic distribution of the heuristituea seen during the searches re-
ported in Table 2, as well as the static distribution of valirethe PDB used. The following obser-
vations can be made from these results. First, there is aafi@difference between the static and
dynamic distribution of values for the regular (consistdrguristic. As can be seen, the dynamic
distribution for the regular lookup is greatly shifted tads the smaller heuristic values, compared
to their static distribution in the PDB. This phenomenon w&sussed and explained by Hoée
al. [18]. The main reason for this is that most of the generatates@re deep in the search tree,
and their values are necessarily small to be generated &ebnd, it is easy to recognize that the
heuristic with the best performance also had a superioft¢shio the right) dynamic distribution of
heuristic values. Note that all these versions used extietlgame PDB represented by the (overall)
static distribution of values. Third, the regular heudstad a poor dynamic distribution because it
is consistent; when the heuristic value for a state is loe,dhildren of that state must also have
low values. Inconsistent heuristics do not have this prabkenode can receive any value, meaning
that the distribution of values seen is closer to the stasitridution of the PDB. Finally, inconsis-
tency has the effect of improving the dynamic distributiowards that of the static distribution.
The greater the degree of inconsistency, the closer thengigndistribution approaches the static
distribution of the PDB.

7.2.2 DYNAMIC BRANCHING FACTOR AND BPMX

The effectiveness of BPMX can be characterized by its effacthe branching factor during the
search. The dynamic branching factor (DBF) is defined as\tbeage number of children that are
generated for each node that is expanded in the search. \Wadwedristic function is inconsistent
and BPMX is employed, the dynamic branching factor can bdlsmthan the normal branching
factor.

34

| Choice| Lookups| DBF |

Nodes | BPMX Cuts |

1 1 13.355| 90,930,662 0
2 1 9.389| 17,098,875 717,151
3 1 9.388 | 14,938,502 623,554
4 1 9.382| 14,455,980 598,681
5 1 7.152| 5,132,396 457,253
8 1 7.043| 4,466,428 402,560
12 1 7.036| 3,781,716 337,114
16 1 6.867| 3,822,422 356,327
20 1 6.852| 3,819,699 357,436
24 1 6.834| 3,829,139 360,067
dual 1 7.681| 8,315,117 796,849

Table 3: Rubik’s cube: random heuristic with BPMX

Table 3 presents DBF results for Rubik’s cube obtained ugiag/-edge PDB. An experiment
was performed where the number of possible PDB lookups wasdyabut only a single lookup
was used by randomly selecting from this set. The first colgives the number of available
heuristics to randomly select from. The other three colusimsv results averaged over the same
set of instances of Table 2.

In the first row, only one PDB lookup was used. Since the san® BBkup was performed at
all nodes, this benchmark case is for a single consistentaeeuristic. The dynamic branching
factor here is equal to the actual branching fact8r355, once redundant operators are removed
(consistent with the results of Korf [24]).

As the number of possible heuristic lookups increases, BB Becreases. This results in a
significant reduction in the number of generated nodes. Naigghenomena in these results. First,
the range of heuristic values in Rubik’s cube is rather smaalican be seen in Figure 24. Thus, the
potential for a large difference between a parent’s haanstiue and its children’s is small. Even in
this domain inconsistency caused a dramatic performanpmiament. Second, no extra overhead
is needed by these heuristics as only a single PDB lookuprfsrpged at each node. Thus, the
reduction in the number of generated nodes is fully refletttede running times.

7.3 The 15-puzzle

Figure 25: BPMX (a 7-7-1 partitioning into disjoint sets bet15-puzzle)

35

| Compress| BPMX | Nodes| Time | Av. h | Memory |
- - 464,978| 0.058| 43.59| 536,871

+ - 565,881| 0.069 | 43.02| 268,435
+ + 526,681| 0.064 | 43.02| 268,435

Table 4: Results on the 7-7-1 partitioning of the 15-puzzle

Another source of inconsistency can be data compressianigges.2). Previous research that
compressed PDBs of the 15-puzzle [11] used a 7-7-1 additivéitipning (shown in Figure 25).
These experiments were repeated, however this time BPMXused. The results (averaged over
the same set of 1000 random instances first used by Korf ameH&I6]) are reported in Table 4.
The first line corresponds to a regular PDB using a 7-7-1tmaning (536 MB of memory used by
PDBs that were represented with a sparse mapping [11]) elsgbond line the PDB is compressed
to roughly half its size (268 MB). Due to the resulting lossimformation, the number of nodes
generated increased by 100,903 (from 464,978 to 565,88&eimyg with previous results [11].
Compressing the PDBs can produce inconsistency and tharisdut by the BPMX results in the
third line (a decrease in the number of nodes generated {6826 At first glance, this seems like a
modest reduction of less than 10%. However, a different Wwayewving this is that BPMX reduced
the loss of information introduced by compression by 40%mft1 00,903 to 61,703. This was done
with no additional cost in memory or time.

7.4 The 24-puzzle

| Row || Lookups| Heuristic | Nodes| Time |
One PDB lookup
1 1 Regular 26,630,050,115 15,095
2 1 Dual 24,155,327,789 20,105
3 1 Dual + BPMX 18,188,651,278 10,761
4 1 Random 3,386,033,015 3,040
5 1 Random + BPMX 1,938,538,739 1,529
Two PDB lookups
6 2 Regular + Regular* 1,631,931,544 1,483
2 2 Randoms + BPMX 908,186,066 1,065
Three PDB lookups
8 3 Regular + Regular* + Dual + BPMX 852,810,804 1,142
9 3 3 Randoms + BPMX 818,601,469 1,022
Four PDB lookups
10 | 4 | Regular + Regular* + Dual + Dual* +BPMX 751,181,974 1,331

Table 5: Results on the 24-puzzle

We now present results on the 24-puzzle using 6-6-6-6 addiDBs [26]. Similar tendencies
were observed for the 15-puzzle with the 7-8 additive PDEJ.[Z he results in Table 5 are aver-

36

aged over the 10 instances with the smallest solution lefigth standard 50 random states [26].
Four heuristics are available based on 6-6-6-6 additive $[28] (Figure 8): regular lookup, regu-
lar lookup reflected about the main diagonal (indicated byimthe table), dual lookup, refection
of the dual lookup. The random heuristic randomly choosesuaistic from the set of these four
heuristics. A single dual or random lookup outperforms #ngutar lookup. We showed in Sec-
tion 7.1 that there is a diminishing return for adding mormkiaps for both the regular and random
case. In the 24-puzzle, adding more lookups (up to the maxiwifour) was beneficial. While the
smallest number of nodes was achieved by using all four lpskilne best time was obtained by an
inconsistent heuristic using two or three lookups.

7.5 The Pancake puzzle

| Row || Lookup \ Nodes | Time | DBF |
Normal Operator Order
1 Regular 342,308,368,717 284,054| 15.00
2 Dual 27,641,066,268 19,556 15.00
3 Dual + BPMX 14,387,002,121 12,485| 10.11
4 Regular + Dual + BPMX| 2,478,269,07q 3,086| 10.45

Operators Ordered by Average Heuristic Difference

5 Regular 113,681,386,064 95,665| 15.00
6 Dual 13,389,133,741 9,572| 15.00
7 Dual + BPMX 85,086,120 74| 4.18
8 Regular + Dual + BPMX 39,563,288 49| 5.93

Table 6: 17-pancake results

Table 6 shows results for IDA* optimally solving 10 randorstances of the 17-pancake puzzle
with a PDB of 7 pancakes. There are no geometrical symmebB Bokups in this domain;
and the only way to achieve inconsistency is with the duadkupo Rows 1-3 have a single PDB
lookup. The dual heuristic reduces the number of nodes gtrtkby more than a factor of 12. This
improvement is the consequence of the larger diversity adnsistent heuristic values encountered
in the search. When BPMX is used with the dual heuristic, thmler of nodes generated is
further reduced by almost a factor of two, the result of theashgic branching factor falling from
15 to 10.11. The best results (row 4) are achieved by perfarnwo lookups (regular and dual)
and using BPMX to propagate inconsistencies. This comibimgtroduces a 138-fold reduction in
nodes generated over the regular lookup on its own.

7.5.1 CPERATOR ORDERING TO INCREASEBBPMX CUTOFFS

Consider the following insight which can be used to furth@rance performance in some domains.
If a node has a child that would cause a BPMX cutoff, it showddybnerated as early in the set of
children as possible. This would allow the cutoff to be maglete subtrees under the other children
are searched. If different operators tend to create instergiy at different rates, the search could
be sped up by ordering the operators accordingly. The aperah Rubik’s cube and TopSpin are

37

symmetric and it is difficult to find a useful way to order thefhis is not the case for the pancake
puzzle; each operator differs in the number of pancakes thove

| Operator| Regular [Dual |

2-10 | 0.370-0.397, O
11 0.396 0.613
12 0.397 0.958
13 0.400 1.165
14 0.401 1.291
15 0.402 1.358
16 0.411 1.376
17 0.216 1.321

Table 7: Average Heuristic Difference (AHD) of the operatof the 17-pancake puzzle

We introduce a new term, theverage heuristic differenc@HD). The AHD(op},) for a given
operatorop and heuristich is the average, over all state¢o which op can be applied, ofh(s) —
h(op(s))|. To estimate the AHD of an operator, a random state was cl{@geand then the relevant
operator was applied to this state (yielding state The difference in the heuristic value between
s1 andsy was measured. This was repeated for 100 million differeriest Table 7 shows the AHD
results for the operators of the 17-pancake puzzle. ThelRegolumn presents the AHD for each
operator when the regular lookup was performed and the Dalahm presents the AHD for the
dual PDB lookup.

The regular PDB lookup is consistent and therefore cannat e AHD greater than 1. For the
dual PDB lookups the results are more interesting. Oper&et0 all have AHD values of exactly
0, an artifact of the particular PDB used for these expertsiefhe PDB is based on locations 11—
17 and moves which did not affect any of these locations @pes 2—10) could not cause a change
in the dual heuristic [14, 45]. However, for larger operat(t3—-17), the AHD for the dual lookup
was more than 1. Note that operator 16 has a larger AHD tharatpel 7, even though it changes
a smaller number of locations.

In Table 6, the results for rows 1-4 were obtained by usingfferators in the order of most to
least tokens moved. For rows 5-8, the operators were ordemecreasing order of AHD of the
dual lookup, as measured in Table 7. Even when BPMX is not (gmdpare rows 5 and 6 to rows
1 and 2), significant improvements are seen. When BPMX is,usH® ordering roughly halves
the DBF and dramatically reduces the number of generatedsn@dmpare rows 7 and 8 to rows 3
and 4). The best result (regular and dual lookup, enhancédB#AMX and AHD ordering—row 8)
reduces the number of generated nodes by four orders of tndgrdas compared to doing the usual
single regular lookupg?

20. We use simple PDBs for the pancake puzzle to demondtebenefits of inconsistent heuristics. However, enhanced
PDB methods [41, 17], as well as the domain spea#p heuristic [16], have been developed for this problem.
Applying our techniques on top of these heuristic will likashow similar performance gains. In fact, an advantage
of using BPMX and random heuristics for this application hksady been demonstrated with one of these recent
PDBs [17].

38

8. Pathfinding Experiments with A*

A* has different properties than IDA*. To properly assessoimsistent heuristics in the A* setting,
we need an application domain for which A* is well suited. Wdas IDA* is the algorithm of
choice for combinatorial puzzles, A* is preferred for patkfhg in explicit state spaces. In this
section we will demonstrate that inconsistent heurist@s mcur significant overhead in A* if
BPMX is not used. We then demonstrate a number of cases wlkensdistent approaches can
outperform consistent approaches.

The application domain is a set of 75 grid maps from commkgzimes, all scaled to grids of
size 51Z512. Each location on the map is either blocked or unblocsdeach map, problems are
broken into 128 buckets according to the optimal path lengith path lengths varying between 1
and 512. We randomized 1,280 problem instances from eaclidifgpent start/end locations). The
agent can move horizontally, vertically or diagonally {g@igossible directions). All experiments in
this section were conducted on a 2.4GHz Intel Core 2 Duo WaB RAM. Most of our reported
results are only for BPMX(1) (see Section 5.3.2) and in tetisn when the term BPMX is used
without a parameter it refers to BPMX(1).

All running times are measured in seconds.

8.1 Pathfinding Heuristics

Octile distancas the most common heuristic in this domain. If the distaradesg ther andy coor-
dinates between two points gkér, dy), then the octile distance between thenyB«min (dz, dy)+

|dx — dy|. This is the optimal distance between the two points if 1)eheere no restrictions from
obstacles or boundaries, and 2) you are allowed to go to apgwfneighbors in all eight possible
directions (including diagonals). The octile heuristicamsistent and does not require any memory.

8.1.1 TRUE DISTANCE HEURISTICS

True-distance heuristics (TDHs) are memory-based hagishat were recently developed for
pathfinding applications [40, 13]. An example of a TDH is tfiferential heuristic[40] (DH)
which is built as follows: choosé< canonical states from the domain; compute and store the
shortest path distance from &l canonical states to all other reachable states. For eadn<can
ical state,S memory is required, wher§ is the number of states in the state space. For the
ith canonical statek;, an admissible heuristic for any two poinisandb can be obtained using
hi(a,b) = max(|c(a, k;) — c(b, k;)|, octile(a, b)), wherec(z, y) is the shortest path fromto y that
is stored in the database. Becau$e b) + c(b, ki) > c(a,k;) for anya, b andk;, it follows that
c(a,b) > c(a, k;) — c(b, k;). Hencelc(a, k;) — c(b, k;)| is an admissible consistent heuristic for the
distance between andb.

|c(a, k;) — (b, k;)| can sometimes produce a heuristic value higher than thie betirristic. For
example, this can happen whéis on the optimal path from to k;, and the exact distance from
a to b is larger than the octile distance. However, DH can sometipreduce values smaller than
the octile distance. Taking the maximum of the DH and thdebiuristic guarantees that the new
heuristic dominates the octile heuristic.

For a given state, if one takes the maximum of all availabfiedintial heuristics, the resulting
value is a consistent heuristic. However, if a random sufiiséiie available heuristics is considered
then the resulting value will be inconsistent.

39

8.1.2 INTERLEAVED DIFFERENTIAL HEURISTICS

0o|1]2]3|40
4101|2194
3lalol'1)'2]3
2034012
123|401
0 P1 [“2°3 [Fa | o

Figure 26: Interleaved differential heuristics

We introduce thenterleaved differential heuristifiDH), a convenient way to get most of the
benefits of multiple DHs (i.e., with multiple canonical &s) but with the storage of only one
(similar to what was done in [5]). Consider having five DHs4.Instead of storing the distances
to all five canonical states at all states, only store a sidigance at each state. Consider Figure 26
with an empty grid. Each cell is labeled with the canonicatestvhose distance is stored at that
state. In this setupS memory is used to store portions of all five heuristics, bet ¢harch can
benefit from all of them as follows.

A heuristic value between two states is only available ifdistance to the same canonical state
is stored at each state. Thus, if the current node being eeghis stateD at the bottom of the
grid and the goal is staté&' (dotted border), then DH can be used to directly lookup aikgar
value between these two states (both use canonical stat®&pver, if stated is being expanded,
no differential heuristic betweed and G can be directly computed (different canonical states).
However, neighboring~ is stateF' for which such a heuristic can be computed. THus4, G) =
lc(A, ko)—c(F, ko)|—c(F, G), for canonical stat&,. There are many lookups that can be performed
using both the neighborhood of the current search node anddighborhood of the goal. More
lookups will improve the heuristic estimate but take moneeti In this work only lookups from the
current state to neighbors of the goal are performed.

The final heuristic is the maximum of the computed IDH heigisind the octile heuristic.
Because different heuristics are used at each state, thalldveuristic is inconsistent.

For further efficiency and improved performance, when we lildds we perform a small
breadth-first search starting at the goal until one possitialie is found for each possible DH lookup.
We cache all distances and associated errors. Then, foigtympde during the search we perform
a single lookup in the cache to lookup a heuristic value. Thishe approach is efficient because
the identity of the neighbor state is unimportant; only tistathce and additional error are needed.
Therefore the cache is the size of the number of interleageddtics, not the number of neighbors
of the goal.

40

8.2 Random heuristic

The first set of experiments illustrates the effect of BPMXAdnwhen an inconsistent heuristic is
used. Three heuristics are compared:

(a) octile distance (consistent, used as the baseline);

(b) ten DHs (10 canonical states) were built and in a givete giae was randomly chosen to use
(inconsistent, calledandomn). This was done with and without BPMX; and

(c) maximum of all ten DHs (consistent, best possible h&ajis

The memory needs for 10 DHSs (for both random and maximum().$6

Memory Usage: 10S

10°

I e A* - 10S Random

E === A*-Octile |

§ 1071 -omee A* - 10S Random + BPMX(1) e T

; —_ A% _ 10S Max] e S N U SRl ~

5 et P

§ 102 e ~ [R
—r—]

é ./'\‘“'_'_,.__al'—"‘*"‘

°

=)

s

S

<

o0 R A

U L R R

:: e aeest S o

m 104 - g ~——‘- g —

g o

é 103

:0 —

= -

j; 10* V <

§ /

< 10 /
100“““‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0 50 100 150 200 250 300 350 400 450 500 @ 550

Solution path length

Figure 27: Nodes expanded in pathfinding witt6 memory

Figure 27 presents experimental results for the number désgbottom) and the CPU time
(top). The problem instances were partitioned into buckated on their solution length. The
axis presents the different solution lengths, with eacmtgoging the average solution length of a
bucket. They-axis is the number of node expansions using a logarithnailesc

As expected, A* with the max of all possible heuristics exgmthe fewest number of nodes. A*
with the random heuristic and no BPMX expands the most. Tingaa heuristic can never produce

41

worse heuristic values than the octile heuristic. Howesnsrdom without BPMX performs almost
an order of magnitude more node expansions than the octileéstie due to node re-expansions.
From the slope of the lines, it appears that random witholMRBRdds a slight polynomial overhead
to A*, When BPMX is added to random it performs better than Athahe octile heuristic, and the

performance is quite close to the consistent (max) hearistnis shows that BPMX is effective at
overcoming the node re-expansion problem. It is impregsiseBPMX enhances random, with its
single lookup, to achieve nearly the performance of maxy vistten lookups.

Timing results (top of the figure) show similar trends. Randgvith and without BPMX) has
faster lookup times than the max heuristic (fewer heusstie consulted) and for short paths has
better time performance. Unlike IDA*, where the algorithmiyoneeds to know whether a cutoff
occurs, in A* the correct maximum value is heeded. Hence, éxaluation is not possible in A*,

8.2.1 HXED NUMBER OF LOOKUPS

Memory Usage: 10S

—o— k fixed lookups

=2 10000 ~* krandom lookups

o]

<

% 4

o 5000 -

) /

2

S

z

2000 4 8
‘ ‘ ‘ 1 T
0.005 0.01 0.02

Time elapsed

Figure 28: Comparing fixed and random lookups

Figure 28 presents a comparison whegrbeuristics were used. Thegdookups were either
fixed (same heuristic used at all nodes; consistent) or raimbul (random selection at a given
node; inconsistent) out of 10 available heuristics. BPM>swaed for the inconsistent heuristics.
In this experiment only the problems with the longest sohdion each map were considered. Each
point represents the average of approximately 500 inssapbatting both time and node expansions
on logarithmic scales. The top curve shows the performaivem g fixed lookups are used, while
the bottom curve shows the performance ugirrgndom lookups.

This experiment shows that if the number of lookups is fixednta random strategy is better
than a fixed strategy for low values bf as more diversity is added to the resulting heuristic. When
k increases, the significance of this effect decreases asloubngps implicitly adds more diversity
of values with the fixed lookups too. In this domain, the cstesit max-of-10 heuristic achieved
the best time results.

42

The results are explained by a number of key differencesd®rvising maps and using com-
binatorial puzzles as application domains. These difis@ercause more difficulties to achieve
speedup in the search with inconsistent heuristics in thifipding domains than in the puzzle
domains.

e Memory: Unlike the permutation puzzles, whekdookups (random or fixed) need the same
amount of memory, heré fixed lookups need:S memory, whilek random lookups (out
of 10) needl0S memory. k fixed lookups uses less memory and therefore may have better
memory and cache performance. This explains why when 7 the fixed lookups have a
lower search time than the random lookups.

¢ Indexing time: In the puzzle domains the cost of determining where to fincuaiigc lookup
is relatively expensive. Typically a non-trivial indexiffignction is needed, and possibly the
application of one or more symmetries and/or permutatitmshe map domain, indexing is
easier to compute, leading to (slightly) faster lookup sme

e Node re-expansion: In IDA* (as used in the puzzle domains), an inconsistent is&ar
does not affect performance. In A* (as used in the maps domtie problem of node
re-expansions can cause problems (even when BPMX is used).

Thus, the maximum of 10 heuristic would be the best choickerpathfinding domain both in
nodes and in time, while in the puzzles inconsistent hacsistith fewer lookups might yield faster
times (e.g., in our 24-puzzle results).

Given a new domain, these are important factors which déernmvhether inconsistent ap-
proaches will be successful. In Section 8.3 we show thatritezleaved heuristic allows multiple
lookups and improves the performance of differential teios using inconsistency and BPMX.

8.2.2 WARYING THE NUMBER OF LOOKUPSPERFORMED

This section examines the performance of random lookupfi@sinount of available memory
(and number of heuristics) increases upl@S. Three approaches for performing lookups are
considered:

(a) take the maximum of all available heuristics at each node
(b) take the maximum of 10% of the available heuristics atloam (and use BPMX), and
(c) take the maximum of 20% of the available heuristics atloam (and use BPMX).

For example, if 10 heuristics are availabl®$ memory), then 1 or 2 lookups are performed at each
state for the 10% and 20% heuristics, respectively. Sitgjldr50 heuristics are available, 5 or 10
lookups are performed for the 10% and 20% heuristics reispéct

Figure 29 shows three curves, one for each approach. Betieand 100 differential heuris-
tics were built, increasing by intervals of 10. The nodesagxied and time elapsed to solve the
hardest problems (length 508-512) on each map are compuadiecoanpared for each of the three
approaches. The points which correspond to having 10, 5a@@dlifferential heuristics available
are labeled on each curve. This is a log-log plot, making tfierdnces easier to see.

Consider the consistent heuristic which takes the maximeenall available heuristics. With 10
differential heuristics, an average of 7 milliseconds isdex to complete a search with 1,884 node

43

->¢ Differential Heuristic (Consistent)
3000 | —+ Differential Heuristic (10% of Lookups)
—e— Differential Heuristic (20% of Lookups)

3
E
= 2000 10
o
o
)
70}
)
92
@]
S|
§ 1000
<
s |
>
<

500

‘ \ ‘ \ ‘ \ ‘ \ ‘ \
0.004 0.006 0.008 0.010 0012 0014

Average time elapsed

Figure 29: Time versus nodes tradeoff as more heuristicawaitable

expansions. As more differential heuristics are used, timelaer of node expansions monotonically
decreases. However, execution time only decreases urttiff@éential heuristics are used, at which
point the cost of performing additional lookups overtakkesreduction in nodes expanded.

Randomly using only 10% of the available heuristics is irgistent. This curve begins with
the worst performance of the three in terms of both nodes iamel tHowever, when 10 random
heuristics (out of 100) are used it is able to match the best performance of the consistent
heuristic (30 lookups) and is faster than the consistentisteuiwith 40 or more lookups.

Randomly using 20% of the available heuristics matchesitie performance of 30 consistent
lookups when performing only six random lookups (both 888 memory). The fastest perfor-
mance is whes0S memory is available (12 lookups are performed) and is sicamtly better than
the best fixed lookup result. The error bars on this curveespond to 95% confidence intervals,
showing that this result is statistically significant, alliyy a small margin.

8.3 Interleaved Differential Heuristics

In this section, experimental results comparing a numbappfoaches that all ud& memory are
reported. The octile heuristic is used as the baseline dusia same results shown previously).
A single consistent lookup is compared to an interleavetemintial heuristic (IDH, defined in
Section 8.1.2) built using 10 differential heuristicsS(memory). Figure 30 presents the node
expansions and the CPU time for these approaches. Thesresalplotted as a function of the
solution length. Unlike previous figures, both axes havedirscales.

The nodes expanded and timing results results reinforceatier discussion. BPMX is critical
to achieving good performance. Again, even though the sgtinalues are no worse than that of
the octile heuristic, the performance of the interleavetdnsistent) heuristic without BPMX is

44

Memory Usage: 1S

0,05 == A*- 1S Interleaved, no BPMX '\" m
e | === A*- Octile] A
8 1 — A*- 1S Consistent Lookup ot N
I} 0.04 i -
_:/ i — A* - 1S Interleaved, BPMX() ’l /\/"
2 o0 35 ------- A* - 18 Interleaved, BPMX(1) | Nl A~
034 i 3

%] N ’/‘/./
2]
-8 0.024
)] WV
E 0.01 ; ;

] o

03 __
25000 A

] Iy

] i ;

] i A
= 20000 N / A
2 g M S
< 1 i I
< 1 i M
o 4 i s
3 15000 4 s
@ 1 N ~ J
_G.O) : i Y] N
g 1 !'\l N /// ,_/\/—//

1

: 10000 e T Y
s] iy e
z 5000 v T NN/""/\N

] N _ /_,/;/_/Nf"/

| e

0 BN i -

0 50 100 150 200 250 300 350 400 450 500 550
Solution path length

Figure 30: Nodes expanded witly memory

poor (roughly by a factor of 10 for the hardest problems).hBarsions of the interleaved heuristic
with BPMX outperform the consistent DH heuristic. BPMX(1asvbetter than BPMX¢). When
15 memory is available for this domain, an inconsistent héarautperforms a consistent heuristic
and produces the best results. The curves for timing reswdtatain their same orderings and the
same relative performance, supporting that BPMX node esipaa (ford > 1) should count the
same as A* node expansions

Figure 31 shows the results for using 80 DHs interleaved 101 memory. This is compared
to 105 memory for 10 fixed lookups. The consistent heuristic wits 19relatively informed but a
slight reduction was achieved by the inconsistent hearisti

8.4 Different degrees of BPMX

The final experiment examines the effect of increasing thMBRropagation depth. Figure 32
shows the effect of using different BPMX propagation depifse set of problems from Figure 27
are used, plotting the number of nodes expanded as a furdititve solution length. The heuristic
is a random selection from the 10 available DNgsde expansionfers to each time the neighbors
of a node are generated and looked up in OPEN or CLOSED. Agiexdl above, this process is

45

Memory Usage: 10S

3
& . .n3|— A*-10S Consistent A
S 6+10 NS W
\% """" A* - 10S Interleaved, BPMX(1) /\/\/
- 71 :..."".;'-_‘... Road
Q Lo -
& 4 A/‘/x/v/‘/w, e
E et o -
£ 2 !
9]
=
g
Z 0

2500
-]
2]
T 2000 /\/\/ vA'
g]
>] AR
3 1500 le e o
'8 1 .,~-......"' et
B 1000 T A
)] AL
& 500 | e
9]] e S

0

0 50 100 150 200 250 300 350 400 450 500 550
Solution path length

Figure 31: Average nodes expanded and time with memory

6000 | ~—- BPMX())
I
1 --- BPMX(4) ! r'“';i’-\/\”‘.i\
5000 ___ AT
BPMX(3) A
| f', \J ' I A
4000 — BPMX() | | e ,,«,Q’Z/‘f\'?‘(:
| — BPMX(1) X /

Nodes expanded

L e e L L B B S S B S

0 50 100 150 200 250 300 350 400 450 500 550
Solution path length

Figure 32: Average nodes expanded for different degree$d4)8 propagation

exactly the same in BPMX{ for £ > 1 as in a regular A* expansion. Hence, BPMX expansions
are counted the same as A* expansions. Time results areednaigtthey show the same trend.

46

For this domain and for this heuristic, BPMX(1) was the béstrger values of do not help
on average, as sufficiently large heuristics seem to alwaywithin one step. In a sense this is
fortunate, as BPMX(1) is easy to implement and produces éiséresults.

9. Discussion and conclusions

Historically, inconsistent heuristics have been gengralloided when searching for optimal so-
lutions because of the cost of re-expanding closed nodésAtitand the belief that inconsistent
heuristics are hard to concoct. This paper has demonstizédffective inconsistent heuristics are
easy to create, can be integrated into IDA* and A*, and thatthnefits of doing so often substan-
tially reduce the search effort. This represents an impbdhange to the conventional wisdom for
heuristic search.

IDA* re-expands nodes whether the heuristic is consistenbg so using inconsistent heuristics
does not hurt its behavior. We showed that A*'s worst-cagmagntial behavior is only valid under
unrealistic graph settings. Furthermore, we generalinedkhown pathmax propagation rules to
bidirectional pathmax (BPMX) and showed that BPMX can leatltther performance gains.

Indeed, experimental results showed major performanagsgaith inconsistent heuristics for
IDA* and for A*. For all domains where IDA* was used (the pugalomains), a very large reduc-
tion (more than an order of magnitude for many cases) in thebeu of generated nodes (and CPU
time) was obtained when a single inconsistent heuristic wgasl instead of a single regular con-
sistent heuristic. This was the consequence of introdueinge diversity into the heuristic values
encountered in a search. A further reduction in the numbgenérated nodes was obtained when
BPMX was implemented on top of the inconsistent heuristecpae large heuristic value might
influence the entire neighborhood of states.

In all the domains studied in this paper, more than a singleistic is available either due to
internal symmetries of the same PDB (in the puzzles) or toualiyncreating more heuristics (in the
pathfinding domain). When multiple heuristics exist, dg#aking the maximum of all heuristics
provides the best heuristic value for all states and geeeithie fewest nodes. This comes with
an increase in the runtime overhead per node because of shefdbe additional lookups. More
heuristics being considered increases the diversity afistauvalues, reducing the number of node
expansions. Therefore, when multiple heuristics are avigland more lookups are performed, the
performance advantage of inconsistent over consistenisties decreases. The results presented
in this paper vary, in part, because of the number of heasistvailable in each of the experimental
domains.

For TopSpin, the relative advantage of inconsistent hecgi®ver regular heuristics remains
valid for a large range of the number of multiple lookups the perfomed. In practice, one might
use all 17 lookups as they perform equally to other variahth@® random lookups. For Rubik’s
cube when four lookups are possible the advantage of irstemsiheuristics disappears.

For the 24-puzzle, the maximum number of lookups is four. dwthree random lookups were
shown to outperform (in time) the maximum of all four. For th@ncake puzzle, only a single
lookup exists and the use of inconsistent heuristics predispectacular gains.

When A* is used (in the pathfinding domain), the problem ofenoe-expansion arises. This
issue can cause a single (random) inconsistent heurisgernerate more nodes than a consistent
(octile) heuristic, even though the inconsistent hewrigtiturns a superior heuristic value for all
states. When BPMX is added, the inconsistent heuristia(nar) outperforms a single consistent

47

heuristic and is almost as good as the maximum of ten heagiéidth in node expansions and time).
However, the max of 10 heuristics is still the best choice.

It is more difficult to obtain a speed up when using multipladmics in an inconsistent manner
in the pathfinding domain than in the puzzle domains for a remalf reasons. First, the number
of states in the pathfinding domain grows quadratic in thetdepthe search while in the puzzle
domains it grows exponentially—there is more room for inerent. Second, no symmetries are
possible in the pathfinding domain and more (potential) ipskneed more memory. Third, the
lookup time is much smaller than a PDB lookup, so performingtiple lookups is not as costly.
Finally, there is the issue of node re-expansions. Howelespite this complication, in this domain
too the use of an inconsistent heuristic provides the basitee An inconsistent heuristic that is
based on interleaving a number of heuristics was shown feediarm a consistent heuristic given
the same amount of memory.

The major result of this paper is the demonstration thatrietent heuristics can increase
the diversity of values encountered in a search, leadinghpraved performance. Based on these
results, it is our expectation that the use of inconsistentribtics will become an accepted and
powerful tool in the development of high-performance seaigorithms.

A number of directions remain for future research. ldeiriflymore ways for creating incon-
sistent heuristics will help make their usage more commahlkemeficial. As well, more research
is needed on different variations of BPMX. In particulaffatient levels of lookahead searches for
finding large heuristic values might result in better ovgralformance.

9.1 Acknowledgments

This research was supported by the Israel Science Found@B&) under grants number 728/06
and 305/09 to Ariel Felner. The research funding from Allisrinformatics Circle of Research
Excellence (iCORE) and Canada’s Natural Sciences and Eegimgy Research Council (NSERC)
is greatly appreciated.

References

[1] A. Bagchi and A. Mahanti. Search algorithms under déferkinds of heuristics — A compar-
ative study.Journal of the ACM30(1):1-21, 1983.

[2] M. Ball and R. C. Holte. The compression power of symbgiattern databases. Interna-
tional Conference on Automated Planning and SchedulingPI§-08) pages 2—-11, 2008.

[3] B. Bonet and H. Geffner. Learning depth-first search: Afiad approach to heuristic search
in deterministic and non-deterministic settings, and jigliaation to MDPs. Irinternational
Conference on Automated Planning and Scheduling (ICAR386§es 142-151, 2006.

[4] T. Chen and S. Skiena. Sorting with fixed-length revexséliscrete Applied Mathematics
71(1-3):269-295, 1996.

[5] J. C. Culberson and J. Schaeffer. Pattern databaSesiputational Intelligencel4(3):318—
334, 1998.

[6] R. Dechter and J. Pearl. Generalized best-first seareltegtes and the optimality of A*.
Journal of the ACM32(3):505-536, 1985.

48

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Domshlak, E. Karpas, and S. Markovitch. To max or notrtax: Online learning for
speeding up optimal planning. MAAI Conference on Atrtificial Intelligence (AAAI-1Pages
1701-1706, 2010.

H. Dweighter. Problem e256%merican Mathematical Monthl82:1010, 1975.

S. Edelkamp. Planning with pattern databasesEurmopean Conference on Planning (ECP-
01), pages 13-24, 2001.

A. Felner, R. E. Korf, and S. Hanan. Additive patternatetse heuristicslournal of Artificial
Intelligence Researct22:279-318, 2004.

A. Felner, R. E. Korf, R. Meshulam, and R. C. Holte. Cosgsed pattern databasdsurnal
of Artificial Intelligence Researgt30:213-247, 2007.

A. Felner, R. Meshulam, R. C. Holte, and R. E. Korf. Coegsing pattern databases. In
National Conference on Artificial Intelligence (AAAI-Qfpges 638—643, 2004.

A. Felner, N. Sturtevant, and J. Schaeffer. Abstracbased heuristics with true distance
computations. IrSymposium on Abstraction, Reformulation and Approximat®ARA-09)
20009.

A. Felner, U. Zahavi, J. Schaeffer, and R. C. Holte. Dioakups in pattern databases. In
International Joint Conference on Atrtificial Intelligen¢dCAI-05), pages 103—-108, 2005.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal baseisthe heuristic determination of
minimum cost pathdEEE Transactions on Systems Science and Cybern&ieS-4(2):100—
107, 1968.

M. Helmert. Landmark heuristics for the pancake probldn Third Annual Symposium on
Combinatorial Search (SOCS-1@ages 109-110, 2010.

Malte Helmert and Gabriele Roger. Relative-ordertiausions for the pancake problem. In
ECAI, pages 745-750, 2010.

R. C. Holte, A. Felner, J. Newton, R. Meshulam, and D.dyurMaximizing over multiple
pattern databases speeds up heuristic seautfficial Intelligence 170:1123-1136, 2006.

R. C. Holte, J. Newton, A. Felner, R. Meshulam, and D.dyurMultiple pattern databases.
In International Conference on Automated Planning and Sclivegl(ICAPS-04) pages 122—
131, 2004.

R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonaldierarchical A*: Searching
abstraction hierarchies efficiently. National Conference on Atrtificial Intelligence (AAAI-96)
pages 530-535, 1996.

A. Junghanns and J. Schaeffer. Domain-dependentesaggnt search enhancements. In
International Joint Conference on Atrtificial Intelligen¢dCAI-99), pages 570-575, 1999.

R. E. Korf. Depth-first iterative-deepening: An optihedmissible tree searchArtificial
Intelligence 27(1):97-109, 1985.

49

[23] R. E. Korf. Real-time heuristic searchtificial Intelligence 42(3):189-211, 1990.

[24] R. E. Korf. Finding optimal solutions to Rubik's Cubeing pattern databases. National
Conference on Atrtificial Intelligence (AAAI-9Pages 700-705, 1997.

[25] R. E. Korf. Recent progress in the design and analysedofissible heuristic functions. In
National Conference on Artificial Intelligence (AAAI-OPpges 1165-1170, 2000.

[26] R. E. Korf and A. Felner. Disjoint pattern database ksios. Artificial Intelligence 134(1-
2):9-22, 2002.

[27] R. E. Korf and A. Felner. Recent progress in heurist@arsle: A case study of the four-peg
Towers of Hanoi problem. Iimternational Joint Conference on Artificial IntelligenfdCAI-
07), pages 2324-2329, 2007.

[28] R. E. Korf and M. Reid. Complexity analysis of admissiliieuristic search. [National
Conference on Atrtificial Intelligence (AAAI-9§)ages 305-310, 1998.

[29] R. E. Korf, M. Reid, and S. Edelkamp. Time complexity tdrative-deepening-A*Acrtificial
Intelligence 129(1-2):199-218, 2001.

[30] R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald. Frontgarch. Journal of the JACM
52(5):715-748, September 2005.

[31] A. Mahanti, S. Ghosh, D. Nau, A. Pal, and L. Kanal. On tegnaptotic performance of IDA*.
Annals of Mathematics and Artificial Intelligenc20(1-4):161-193, 1997.

[32] A. Martelli. On the complexity of admissible searcha@iighms. Artificial Intelligence 8(1):1—
13, 1977.

[33] M. McNaughton, P. Lu, J. Schaeffer, and D. Szafron. Mgmefficient A* heuristics for
multiple sequence alignment. Mational Conference on Artificial Intelligence (AAAI-02)
pages 737-743, 2002.

[34] L. Mero. A heuristic search algorithm with modifiabldiasate. Artificial Intelligence 23:13—
27,1984.

[35] N. Nilsson.Artificial Intelligence: A New Synthesi$lorgan Kaufmann, 1998.

[36] J. Pearl. Heuristics: Intelligent Search Strategies for Computeolffem Solving Addison-
Wesley, 1984.

[37] D. Ratner and M. K. Warmuth. Finding a shortest solutionthe N x N extension of the
15-puzzle is intractable. INational Conference on Atrtificial Intelligence (AAAI-8®ages
168-172, 1986.

[38] S. Russell and P. NorvidArtificial Intelligence, A Modern Approach, Third Editiofrentice
Hall, 2010.

[39] M. Samadi, M. Siabani, A. Felner, and R. C. Holte. Conspiheg pattern databases using
learning. InEuropean Conference on Artificial Intelligence (ECAI-08ges 495-499, 2008.

50

[40] N. Sturtevant, A. Felner, M. Barer, J. Schaeffer, andBNtch. Memory-based heuristics for
explicit state spaces. lmternational Joint Conference on Atrtificial Intelligen¢EdCAI-09),
pages 609-614, 2009.

[41] F.Yang, J. Culberson, R. C. Holte, U. Zahavi, and A. Eeld general theory of additive state
space abstractiongournal of Artificial Intelligence ResearcB2:631-662, 2008.

[42] U. Zahavi, A. Felner, N. Burch, and R. C. Holte. Predigtithe performance of IDA* with
conditional distributions. IMAAI Conference on Artificial Intelligence (AAAI-Q@rages 381—
386, 2008.

[43] U. Zahavi, A. Felner, N. Burch, and R. C. Holte. Predigtithe performance of IDA* (with
BPMX) with conditional distributionsJournal of Artificial Intelligence ResearcBB7:41-83,
2010.

[44] U. Zahavi, A. Felner, R. C. Holte, and J. Schaeffer. Daedrch in permutation state spaces.
In National Conference on Artificial Intelligence (AAAI-0@pges 1076-1081, 2006.

[45] U. Zahavi, A. Felner, R. C. Holte, and J. Schaeffer. yah permutation state spaces and
the dual search algorithnArtificial Intelligence 172(4-5):514-540, 2008.

[46] U. Zahavi, A. Felner, J. Schaeffer, and N. R. Sturtevdntonsistent heuristics. INational
Conference on Atrtificial Intelligence (AAAI-QPages 1211-1216, 2007.

[47] Z. Zhang, N. Sturtevant, J. Schaeffer, R. C. Holte, an@&ner. A* search with inconsistent
heuristics. Innternational Joint Conference on Atrtificial Intelligen@dCAI-09), pages 634—
639, 2009.

[48] R. Zhou and E. Hansen. Space-efficient memory-baseuisties. InNational Conference on
Artificial Intelligence (AAAI-04)pages 677—682, 2004.

[49] R. Zhou and E. Hansen. Breadth-first heuristic seafdtificial Intelligence 170(4-5):385—
408, 2006.

[50] R. Zhou and E. A. Hansen. Memory-bounded A* graph seahallorida Atrtificial Intelli-
gence Research Society (FLAIRS;@8ges 203-209, 2002.

Appendix A. Example for dual state heuristic

In this section, we provide an example that shows why the KHeafistic can provide inconsistent
values. Consider th@-pancake puzzle states shown in Figure 33. State the goal state of this
puzzle. State5; is the neighbor of7 obtained by reversing the tokens at locations 1-3 (shown in
the bold frame), and stat§, obtained by further reversing the tokens in locations 146te8G?,

S¢ and S are the dual states 6t, S; andS, respectively.

Note that in this particular examplgy and S{ are identical. In this domain applying a single
operator twice in a row will reach the same state and $tate a single move away from the goal. It
is easy to see that applying the same sequence of operaeessg locations 1-3, reverse locations
1-6) to.S¢ will produce the goal state. Observe that while stateand.S, are neighboring states
andS¢ (their duals) are not neighbors. Reversing any consechtfirst tokens of state{ will not

51

State Cost| The corresponding pattern | h
G | [ale[alafsefrlafsf | 0o | [-[-]-[als[e]-[-[-] |0
s | Lalefalafsiofslafof o a2 | [ofel-[als[el-[-[-] |0
S | Lols[alafafsfo[sfof | 2 | [elslaf-]-[-[-[-]-] |1
G| [alefalafsl e[o | 0o | [-f-]-[als[e]l-[-[-] |0
S| Lalelalafslefrlofof | 2 | [-[-]-[als[el-[-[-] |0
S| Lelslola[a[afr[afo] | 2 | [alslo[-[-[-[-[-][-] |2

Figure 33: 9-pancake states

arrive at nodeS4. Therefore, a consistent heuristic might return valuesStoand S¢ which differ
by more than 1. Using these values f&rand.S; would be inconsistent since they are neighbors.
This can be shown by the following PDB example. Suppose mpetter the9-pancake puzzle are
defined by only considering tokerds— 6 while ignoring the rest of the tokens. The resulting PDB
provides distances to the goal pattern from all reachalifenns. The right column of Figure 33
shows the corresponding pattern for each state obtainedibg thex symbol to represent a “don't
care”.

Regular PDB lookups produce consistent heuristic valuemglisearch [20]. Indeed, since
statesS; andS; are neighbors, their PDB heuristic values differ by at mosinlstateS;, tokens
4 — 6 are in their goal locations and therefdreS;) = 0. In stateS; tokens4 — 6 are not in their
goal locations and we need to apply one operator to reachdalepgttern and thus(S;) = 1
Dual PDB lookups are admissible, but not necessarily cterdis The dual PDB lookup for state
S, (i.e., the PDB lookup for stat€{) returns O since token$ — 6 are in their goal location for
stateS¢. However, the pattern projected from st&igis two moves away from the goal pattern.
Thus, performing the dual lookup for statgsand.S, (i.e., PDB lookups for state${ and.Sg) will
produce heuristics that are inconsistent (0 and 2). Wheringdrom .S, to Sy (or vice versa), even
thoughg was changed by &, was changed by 2.

52

