
Introduction to Artificial Intelligence
COMP 3501 / COMP 4704-4
Lecture 10: Planning

Prof. Nathan Sturtevant
JGH 318

Nathan Sturtevant Introduction to Artificial Intelligence

Today

• Exam review
• Classical Planning

0

1

2

3

4

5

60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-99 100+

Undergrad Graduate

Undergrad Average: 82 Stdev: 11.5
Nathan Sturtevant Introduction to Artificial Intelligence

Background

• Logical planning did not include a heuristic function
• Even moving forward one step in the world is 

relatively expensive
• Compare to custom sliding-tile puzzle:
• Just swap two elements in an array

• Perhaps a simpler representation is required



Nathan Sturtevant Introduction to Artificial Intelligence

PDDL - states

• Factored representation of the world
• World is collection of variables
• Each variable is true or false

• All names are unique
• No explicit negation
• Anything not mentioned is false
• Illegal (variables, negation, functions):
• At(x, y), ¬Poor, At(Father(Fred), Sydney)

Nathan Sturtevant Introduction to Artificial Intelligence

The frame problem

• Any logic language must represent what changes when 
actions take place
• Some languages assume everything changes
• Anything that doesn’t change must be re-derived

• PDDL assumes that most things stay the same

Nathan Sturtevant Introduction to Artificial Intelligence

Actions in PDDL

• Sample action:
• Action(Fly(P1, SFO, JFK),

Precond: At(P1, SFO) ∧ Plane(P1) ∧ Airport (SFO) ∧ 
Airport(JFK)
Effect:¬At(P1, SFO) ∧ At(P1, JFK))

• Can generalize into an action scheme

Nathan Sturtevant Introduction to Artificial Intelligence

Actions in PDDL

• Sample action schema:
• Action(Fly(p, from, to),

Precond: At(p, from) ∧ Plane(p) ∧ Airport (from) ∧ 
Airport(to)
Effect:¬At(p, from) ∧ At(p, to))

• Variables are universally quantified



Nathan Sturtevant Introduction to Artificial Intelligence

Applying Actions in PDDL

• We can apply an action if its preconditions are entailed 
by the KB

• a ∊ ACTIONS(s) ⇔ s ⊨ PRECOND(a)

• RESULT(s, a) = (s - DEL(a)) U ADD(a)
• Simply remove the fluents in the delete list
• Add the fluents from the add list

• All fluents in a state must be grounded (ie no variables)

Nathan Sturtevant Introduction to Artificial Intelligence

Cost of applying actions

• Assume an action has v variables
• Assume there are k ground objects in the world
• O(vk) possible actions can be applied

Nathan Sturtevant Introduction to Artificial Intelligence

Goals

• The goal is just a list of fluents
• When they are true, the goal is reached

Nathan Sturtevant Introduction to Artificial Intelligence

Example Problem

• Init(At(C1, SFO) ∧ At(P1, SFO) ∧ At(C2, JFK) ∧ At(P2, 
JFK) ∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ 
Airport(JFK) ∧ Airport(SFO))

• Goal(At(C1, JFK) ∧ At(C2, SFO))
• Action(Load(c, p, a)

Pre: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
Effect: ¬At(c, a) ∧ In(c, p))

• Action unload?
• Action fly?



Nathan Sturtevant Introduction to Artificial Intelligence

Class Problem

• “Implement” Represent 3-peg towers of hanoi
• 4 disks
• Disks must be ordered largest to smallest

Nathan Sturtevant Introduction to Artificial Intelligence

Search in Planning

• Forward Search
• Look for actions that can be applied to each state
• Continue forward until goal is reached

• Backwards Search
• Look for actions that achieve one of the goal fluents
• Action must not delete one of the goal fluents
• eg if goal is to have money and to own something, 

cannot Buy as last action if it takes away money

Nathan Sturtevant Introduction to Artificial Intelligence

Heuristics for Planning

• Without a heuristic, finding a goal is too expensive
• 2n or 3n states with n fluents

• Where do heuristics come from?
• How can we relax the planning problem?

Nathan Sturtevant Introduction to Artificial Intelligence

Heuristic: Ignore Preconditions

• Can apply any move at any time
• Might have to ignore delete effects
• May not have “legal” state representation

• Test on STP
• Action(Slide(t, s1, s2)

Precond: On(t, s1) ∧ Tile(t) ∧ Blank(s2) ∧ Adjacent(s1, 
s2)
Effect: On(t, s2) ∧ Blank(s1) ∧ ¬On(t, s1) ∧ ¬Blank(s1))



Nathan Sturtevant Introduction to Artificial Intelligence

Heuristic: Ignore delete lists

• Apply actions as normal
• Do not delete items from the original state
• Fluents in the state monotonically increase
• May not have “legal” state representation

• STP?

Nathan Sturtevant Introduction to Artificial Intelligence

Pattern Databases

• Previous two approaches change the number of 
actions, not the number of states

• Pattern databases can also be used in planning
• Special case of other approaches
• Trick is to choose the right abstraction to get good 

heuristic values

Nathan Sturtevant Introduction to Artificial Intelligence

Planning Graph

• Compute possible fluents at each depth
• Compute actions that might be able to be applied
• Mutual exclusions represent what we know cannot 

occur at the same time at this level of the graph
• Can be used as a heuristic for search

Bake(Cake)

Eat(Cake)
Have(Cake)

S0 A0 S1 A1 S2

Have(Cake) Have(Cake) Have(Cake)
Have(Cake)

Eaten(Cake)
Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)
Eat(Cake)

¬

¬ ¬

¬

¬



Homework: 10.2


