Introduction to Artificial Intelligence COMP 3501 / COMP 4704-4 Lecture 14: Supervised Learning

Prof. Nathan Sturtevant

Today

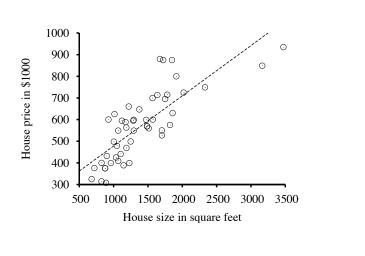
- Supervised Learning
 - Linear regression (18.6)
 - Neural Networks (18.7)
- Making complex decision (17.1, 17.2, 17.3)
 - Background for Reinforcement Learning

sturtevant Introduction to Artificial Intelligence

Univariate linear regression

- Regression on a single variable
 - Input x, and output y; learn weights w
 - $y = w_0 + w_1 x$
- Hypothesis becomes
 - $h_w(x) = w_0 + w_1x$
- Finding best weights is linear regression

Example



Nathan Sturtevant Introduction to Artificial Intelligen

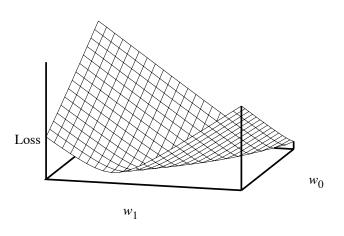
Learning

- · Find the weights which minimize the loss
 - How do we define loss?
 - L₂ is the squared distance (to the line)
 - Also called the L2 norm $Loss(h_w) = \sum_{j=1}^N L_2(y_j,h_w(x_j))$ $= \sum_{j=1}^N (y_j h_w(x_j))^2$ $= \sum_{j=1}^N (y_j (w_0 + w_1x_j))^2$

Mathan Sturtovant

ntroduction to Artificial Intellige

Graph of loss function



Learning

- · In univariate case, can solve exactly
 - In general, use gradient descent to improve values
- Simple algorithm:
 - Initialize w randomly
 - · Loop until converged:
 - For each wi in w
 - $w_i \leftarrow w_i \alpha \partial/\partial w_i Loss(\mathbf{w})$

Gradient

$$Loss(h_w) = \sum_{j=1}^{N} (y_j - (w_0 + w_1 x_j))^2$$

- What is the gradient/slope with respect to wo?
 - Just use a single training example, not all N
 - $\partial/\partial \mathbf{w} (y h(x))^2 = 2(y h(x)) \cdot \partial/\partial \mathbf{w} (y h(x))$
 - $\partial/\partial w_0 (y h(x)) = \partial/\partial w_0 (y (w_0 + w_1 x)) = -1$
 - $\partial/\partial \mathbf{w} (y h(x))^2 = -2 \cdot (y h(x))$
 - $\partial/\partial w_1 (y h(x)) = \partial/\partial w_1 (y (w_0 + w_1 x)) = -x$
 - $\partial/\partial \mathbf{w} (y h(x))^2 = -2 \cdot (y h(x)) \cdot x$

Nathan Sturtevant

Introduction to Artificial Intelligence

Nathan Sturtevant

Introduction to Artificial Intelligence

Final algorithm

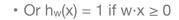
- Weight update was:
 - $w_i \leftarrow w_i \alpha \partial/\partial w_i Loss(\mathbf{w})$
 - $w_0 \leftarrow w_0 + \alpha (y h_w(x))$
 - $w_1 \leftarrow w_1 + \alpha (y h_w(x)) \cdot x$
- For more variables:
 - $w_i \leftarrow w_i + \alpha x_i (y h(x))$
 - Incremental update version
 - Batch update version in book

athan Sturtevant

Introduction to Artificial Intelligen

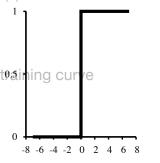
Function vs classifier

- So far we've learned a function approximator
 - · Can also be used to learn a classifier
 - For instance, classify as true if $h(x) \ge 0$

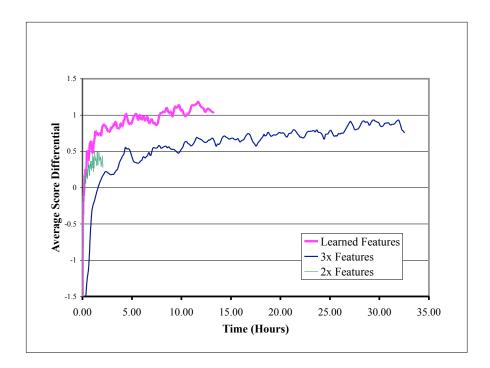


• Or $h_w(x) = Threshold(w \cdot x)$

• Can visualize performance with a teaining curve

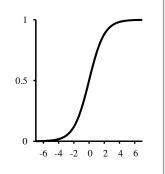


Introduction to Artificial Intelligence

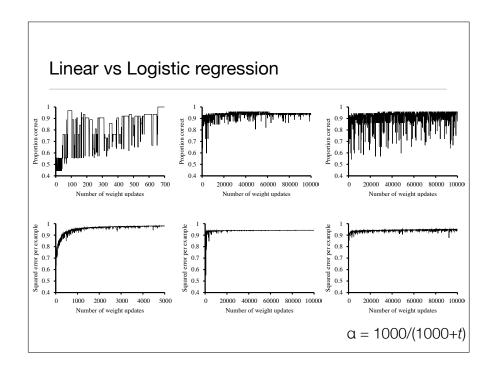


Threshold function

- · What if we use a different threshold function
 - · Get a different type of regression
- $Logistic(z) = \frac{1}{1 + e^{-z}}$
- $h_w(x) = Logistic(w \cdot x)$
- Derivative of logistic:
 - $g'(w \cdot x) = g(w \cdot x)(1-g(w \cdot x))$
 - $w_i \leftarrow w_i + \alpha (y-h(x)) \cdot (h(x)(1-h(x))x_i$



Introduction to Artificial Intelligen

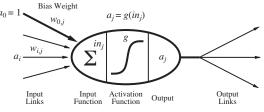


Notes

- · Linear regression is limited to linearly separable classes
 - BUT, can use more complex inputs to make the classes linearly separable [kernel]
- · Regression can easily learn majority function
 - Recall, this was hard for decision trees

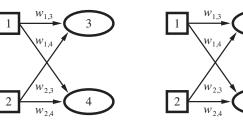
Extending to multiple layers

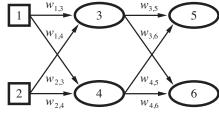
- · What we have so far is called a perceptron
 - Single-layer neural network
- Can extend to multiple layers
 - Usually assume that all outputs from previous layer fully connected to next layer



ntroduction to Artificial Intelligence

Nathan Sturtevan





Neural Network training

- Input rule more tricky
 - Where do the errors come from?
 - . Let $\Delta_j = g\text{'(in}_j) \sum_k \ w_{j,\;k} \ \Delta_k$
 - $w_{i,j} \leftarrow w_{i,j} + \alpha \cdot a_i \cdot \Delta_i$
 - Full derivation in book

Neural Network training

• Use same rule as before to train the output layer

 \bullet Let Err_k be the error in the kth output

 \bullet Or assume a single output unit and ignore k

• Let $\Delta_k = Err_k \cdot g'(in_k)$

• Update rule becomes:

• $w_{j,k} \leftarrow w_{j,k} + \alpha \cdot a_j \cdot \Delta_k$

Nathan Sturtevant

Introduction to Artificial Intelligence

Nathan Sturtevant

Introduction to Artificial Intelligence