Universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$

Will Brian
University of North Carolina at Charlotte

BLAST 2018
University of Denver
\[\mathcal{P}(\omega)/\text{fin} \text{ and its trivial self-maps} \]

\[\mathcal{P}(\omega)/\text{fin} \text{ is the Boolean algebra of all subsets of } \omega \text{ modulo the ideal of finite sets. Its Stone space is } \omega^* = \beta\omega \setminus \omega. \]
\(\mathcal{P}(\omega)/\text{fin}\) and its trivial self-maps

\(\mathcal{P}(\omega)/\text{fin}\) is the Boolean algebra of all subsets of \(\omega\) modulo the ideal of finite sets. Its Stone space is \(\omega^* = \beta\omega \setminus \omega\).

- Every function \(f : \omega \to \omega\) induces a function \(f^\uparrow : \mathcal{P}(\omega)/\text{fin} \to \mathcal{P}(\omega)/\text{fin}\).
\(\mathcal{P}(\omega)/\text{fin} \) and its trivial self-maps

\(\mathcal{P}(\omega)/\text{fin} \) is the Boolean algebra of all subsets of \(\omega \) modulo the ideal of finite sets. Its Stone space is \(\omega^* = \beta\omega \setminus \omega \).

- Every function \(f : \omega \to \omega \) induces a function \(f^\uparrow : \mathcal{P}(\omega)/\text{fin} \to \mathcal{P}(\omega)/\text{fin} \).
- If \(f \) is a mod-finite permutation of \(\omega \), then the map \(f^\uparrow \) induced by \(f \) is an automorphism of \(\mathcal{P}(\omega)/\text{fin} \).
\(\mathcal{P}(\omega)/\text{fin} \) and its trivial self-maps

\(\mathcal{P}(\omega)/\text{fin} \) is the Boolean algebra of all subsets of \(\omega \) modulo the ideal of finite sets. Its Stone space is \(\omega^* = \beta\omega \setminus \omega \).

- Every function \(f : \omega \to \omega \) induces a function \(f^\uparrow : \mathcal{P}(\omega)/\text{fin} \to \mathcal{P}(\omega)/\text{fin} \).
- If \(f \) is a mod-finite permutation of \(\omega \), then the map \(f^\uparrow \) induced by \(f \) is an automorphism of \(\mathcal{P}(\omega)/\text{fin} \). Automorphisms of this kind are called trivial.
$\mathcal{P}(\omega)/\text{fin}$ and its trivial self-maps

$\mathcal{P}(\omega)/\text{fin}$ is the Boolean algebra of all subsets of ω modulo the ideal of finite sets. Its Stone space is $\omega^* = \beta \omega \setminus \omega$.

- Every function $f : \omega \to \omega$ induces a function $f^{\uparrow} : \mathcal{P}(\omega)/\text{fin} \to \mathcal{P}(\omega)/\text{fin}$.
- If f is a mod-finite permutation of ω, then the map f^{\uparrow} induced by f is an automorphism of $\mathcal{P}(\omega)/\text{fin}$. Automorphisms of this kind are called trivial.

A “mod-finite permutation” of ω means a bijection $A \to B$, where both A and B are co-finite subsets of ω.

\(\mathcal{P}(\omega)/\text{fin} \) and its trivial self-maps

\(\mathcal{P}(\omega)/\text{fin} \) is the Boolean algebra of all subsets of \(\omega \) modulo the ideal of finite sets. Its Stone space is \(\omega^* = \beta\omega \setminus \omega \).

- Every function \(f : \omega \to \omega \) induces a function \(f^{\uparrow} : \mathcal{P}(\omega)/\text{fin} \to \mathcal{P}(\omega)/\text{fin} \).
- If \(f \) is a mod-finite permutation of \(\omega \), then the map \(f^{\uparrow} \) induced by \(f \) is an automorphism of \(\mathcal{P}(\omega)/\text{fin} \). Automorphisms of this kind are called trivial.

A “mod-finite permutation” of \(\omega \) means a bijection \(A \to B \), where both \(A \) and \(B \) are co-finite subsets of \(\omega \).

Theorem (Parovičenko, 1963)

Every Boolean algebra of size \(\leq \aleph_1 \) embeds in \(\mathcal{P}(\omega)/\text{fin} \).
The *successor map* on $s : \omega \to \omega$ is an example of a mod-finite permutation:

\[
\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \cdots
\]

Its lifting to $\mathcal{P}(\omega)/\text{fin}$, namely

\[
s^\uparrow([A]) = [A + 1]
\]

is called the *shift map*.
Whether every automorphism of $\mathcal{P}(\omega)/\text{fin}$ is trivial is independent of ZFC:

The Continuum Hypothesis implies there are 2^{\aleph_1} automorphisms of $\mathcal{P}(\omega)/\text{fin}$. The number of trivial automorphisms is only 2^{\aleph_0}, so CH implies that "most" automorphisms are nontrivial.

On the other hand, Shelah proved it is consistent with ZFC that every automorphism of $\mathcal{P}(\omega)/\text{fin}$ is trivial. Shelah and Steprāns later showed that this is a consequence of PFA, and Veličković ultimately weakened the assumption to OCA+MA.
Whether every automorphism of $\mathcal{P}(\omega)/\text{fin}$ is trivial is independent of ZFC:

- The Continuum Hypothesis implies there are 2^{\aleph_1} automorphisms of $\mathcal{P}(\omega)/\text{fin}$.
Whether every automorphism of $\mathcal{P}(\omega)/\text{fin}$ is trivial is independent of ZFC:

- The Continuum Hypothesis implies there are 2^{\aleph_1} automorphisms of $\mathcal{P}(\omega)/\text{fin}$. The number of trivial automorphisms is only 2^{\aleph_0}, so CH implies that “most” automorphisms are nontrivial.
non-trivial autohomeomorphisms

Whether every automorphism of $\mathcal{P}(\omega)/\text{fin}$ is trivial is independent of ZFC:

- The Continuum Hypothesis implies there are 2^{\aleph_1} automorphisms of $\mathcal{P}(\omega)/\text{fin}$. The number of trivial automorphisms is only 2^{\aleph_0}, so CH implies that “most” automorphisms are nontrivial.

- On the other hand, Shelah proved it is consistent with ZFC that every automorphism of $\mathcal{P}(\omega)/\text{fin}$ is trivial. Shelah and Steprāns later showed that this is a consequence of PFA, and Veličković ultimately weakened the assumption to OCA+MA.
Mapping one automorphism into another

Suppose \(A \) and \(B \) are Boolean algebras, and that \(\alpha \) and \(\beta \) are automorphisms of \(A \) and \(B \), respectively.
Suppose A and B are Boolean algebras, and that α and β are automorphisms of A and B, respectively.

We say that α embeds in β, and we write $\alpha \hookrightarrow \beta$, if there is an embedding $e : A \to B$ such that $e \circ \alpha = \beta \circ e$.

Equivalently, $\alpha \hookrightarrow \beta$ if there is a subalgebra C of A such that (B, β) is isomorphic to $(C, \alpha \restriction C)$.

Will Brian Universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$
Suppose A and B are Boolean algebras, and that α and β are automorphisms of A and B, respectively.

We say that α \textit{embeds} in β, and we write $\alpha \hookrightarrow \beta$, if there is an embedding $e : A \to B$ such that $e \circ \alpha = \beta \circ e$.

\[
\begin{array}{ccc}
\mathbb{B} & \xrightarrow{\beta} & \mathbb{B} \\
\downarrow{e} & & \downarrow{e} \\
\mathbb{A} & \xrightarrow{\alpha} & \mathbb{A}
\end{array}
\]
Mapping one automorphism into another

Suppose A and B are Boolean algebras, and that α and β are automorphisms of A and B, respectively.

We say that α embeds in β, and we write $\alpha \hookrightarrow \beta$, if there is an embedding $e : A \to B$ such that $e \circ \alpha = \beta \circ e$.

Equivalently, $\alpha \hookrightarrow \beta$ if there is a subalgebra C of A such that (B, β) is isomorphic to $(C, \alpha|_C)$.
The main result of this talk is an analogue for automorphisms of Parovičenko’s result for algebras:

Main Theorem

Let f be a mod-finite permutation of ω. If A is a Boolean algebra of size $\leq \aleph_1$ and $\alpha : A \to A$ is an automorphism, then following are equivalent:

1. $\alpha \hookrightarrow f^\uparrow$.
2. $\alpha \upharpoonright C \hookrightarrow f^\uparrow$ for every countable, α-invariant subalgebra C of A.
3. there is no “finite obstruction” to embedding α in f^\uparrow.
an example of a finite obstruction

Recall that s denotes the successor map $n \mapsto n + 1$.
an example of a finite obstruction

Recall that s denotes the successor map $n \mapsto n + 1$.

Proposition

If $x \in \mathcal{P}(\omega)/\text{fin}$ with $[\emptyset] \neq x \neq [\omega]$, then $s^\uparrow(x) \not\leq x$.

Will Brian

Universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$
an example of a finite obstruction

Recall that s denotes the successor map $n \mapsto n + 1$.

Proposition

If $x \in \mathcal{P}(\omega)/\text{fin}$ with $[\emptyset] \neq x \neq [\omega]$, then $s^\uparrow(x) \nleq x$.

So, for example, if $\alpha : A \to A$ has nontrivial fixed points, then α does not embed in s^\uparrow, because this proposition provides an obstruction.
Recall that s denotes the successor map $n \mapsto n + 1$.

Proposition

If $x \in \mathcal{P}(\omega)/\text{fin}$ with $[\emptyset] \neq x \neq [\omega]$, then $s^\uparrow(x) \not\leq x$.

So, for example, if $\alpha : \mathbb{A} \to \mathbb{A}$ has nontrivial fixed points, then α does not embed in s^\uparrow, because this proposition provides an obstruction. In fact, one may show that this proposition provides the only possible finite obstruction to embedding in the shift map:

Theorem

Let α be an automorphism of a Boolean algebra \mathbb{A} with $|\mathbb{A}| \leq \aleph_1$. Then α embeds in the shift map s^\uparrow if and only if $\alpha(x) \not\leq x$ whenever $0 \neq x \neq 1$.
Let t denote a permutation of ω that consists of infinitely many \mathbb{Z}-like orbits:

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]

\[t \]

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]

\[\vdots \quad \vdots \quad \vdots \]
Let t denote a permutation of ω that consists of infinitely many \mathbb{Z}-like orbits:

\[
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
t \\
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
\vdots \quad \vdots \quad \vdots
\]

Theorem

*There are no finite obstructions to embedding in t^\uparrow. In fact, every automorphism of every countable Boolean algebra embeds in t^\uparrow.***
Let t denote a permutation of ω that consists of infinitely many \mathbb{Z}-like orbits:

t

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]

\[\cdots \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \]

\[\vdots \quad \vdots \quad \vdots \quad \vdots \]

Theorem

*There are no finite obstructions to embedding in t^\uparrow. In fact, every automorphism of every countable Boolean algebra embeds in t^\uparrow. Consequently (applying the “main theorem”), every automorphism of a Boolean algebra of size $\leq \aleph_1$ embeds in t^\uparrow.***
Corollary

Assuming the Continuum Hypothesis, every automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in t^\uparrow.

Will Brian

Universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$
Corollary

Assuming the Continuum Hypothesis, every automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in t^\uparrow.

Let us say that an automorphism of $\mathcal{P}(\omega)/\text{fin}$ is universal if every other automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in it. Thus, according to the corollary above, CH implies there is a universal automorphism of $\mathcal{P}(\omega)/\text{fin}$.
a corollary

Corollary

Assuming the Continuum Hypothesis, every automorphism of \(P(\omega)/\text{fin} \) embeds in \(t^\uparrow \).

Let us say that an automorphism of \(P(\omega)/\text{fin} \) is *universal* if every other automorphism of \(P(\omega)/\text{fin} \) embeds in it. Thus, according to the corollary above, CH implies there is a universal automorphism of \(P(\omega)/\text{fin} \).

Theorem

Assuming the Continuum Hypothesis, \(t^\uparrow \) embeds in \(2^{\aleph_1} \) distinct automorphisms of \(P(\omega)/\text{fin} \). Because a composition of embeddings is an embedding, CH implies that there are \(2^{\aleph_1} \) distinct universal automorphisms of \(P(\omega)/\text{fin} \).
Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:
a sketch of the proof: what won’t work

Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:

• Begin with an automorphism $\alpha : A \to A$ where $|A| \leq \aleph_1$.
a sketch of the proof: what won’t work

Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:

• Begin with an automorphism $\alpha : A \rightarrow A$ where $|A| \leq \aleph_1$. Write A as an increasing union of countable, α-invariant subalgebras $\bigcup_{\xi<\omega_1} A_\xi$ and let $\alpha_\xi = \alpha \upharpoonright A_\xi$ for all $\xi < \omega_1$.
a sketch of the proof: what won’t work

Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:

- Begin with an automorphism $\alpha : \mathbb{A} \rightarrow \mathbb{A}$ where $|\mathbb{A}| \leq \aleph_1$. Write \mathbb{A} as an increasing union of countable, α-invariant subalgebras $\bigcup_{\xi < \omega_1} \mathbb{A}_\xi$ and let $\alpha_\xi = \alpha \upharpoonright \mathbb{A}_\xi$ for all $\xi < \omega_1$.
- We already mentioned that every automorphism of a countable Boolean algebra embeds in t^\uparrow, so fix an embedding $e_0 : \mathbb{A}_0 \rightarrow \mathcal{P}(\omega)/\text{fin}$ such that $e_0 \circ \alpha_0 = t^\uparrow \circ e_0$.

\[\begin{align*} \alpha & \quad \vdots \quad \mathbb{A} \\ \cup & \quad \mathbb{A}_\xi \\ \vdots & \quad \mathbb{A}_2 \\ \cup & \quad \mathbb{A}_1 \\ \cup & \quad \mathbb{A}_0 \\ \alpha_0 & \quad \overset{e_0}{\longrightarrow} \quad t^\uparrow \end{align*} \]
a sketch of the proof: what won’t work

Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:

- Begin with an automorphism $\alpha : A \to A$ where $|A| \leq \aleph_1$. Write A as an increasing union of countable, α-invariant subalgebras $\bigcup_{\xi < \omega_1} A_\xi$ and let $\alpha_\xi = \alpha|A_\xi$ for all $\xi < \omega_1$.

- We already mentioned that every automorphism of a countable Boolean algebra embeds in t^\uparrow, so fix an embedding $e_0 : A_0 \to \mathcal{P}(\omega)/\text{fin}$ such that $e_0 \circ \alpha_0 = t^\uparrow \circ e_0$.

- Lift e_0 to an embedding e_1 of $A_1 \supseteq A_0$ into $\mathcal{P}(\omega)/\text{fin}$ such that $e_1 \circ \alpha_1 = t^\uparrow \circ e_1$.
a sketch of the proof: what won’t work

Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:

- Begin with an automorphism $\alpha : A \to A$ where $|A| \leq \aleph_1$. Write A as an increasing union of countable, α-invariant subalgebras $\bigcup_{\xi < \omega_1} A_\xi$ and let $\alpha_\xi = \alpha|A_\xi$ for all $\xi < \omega_1$.
- We already mentioned that every automorphism of a countable Boolean algebra embeds in t^\uparrow, so fix an embedding $e_0 : A_0 \to \mathcal{P}(\omega)/\text{fin}$ such that $e_0 \circ \alpha_0 = t^\uparrow \circ e_0$.
- Lift e_0 to an embedding e_1 of $A_1 \supseteq A_0$ into $\mathcal{P}(\omega)/\text{fin}$ such that $e_1 \circ \alpha_1 = t^\uparrow \circ e_1$.
- Continue this up through all the α_ξ, taking unions at limit stages.
a sketch of the proof: what won’t work

Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:

- Begin with an automorphism $\alpha : \mathbb{A} \to \mathbb{A}$ where $|\mathbb{A}| \leq \aleph_1$. Write \mathbb{A} as an increasing union of countable, α-invariant subalgebras $\bigcup_{\xi < \omega_1} \mathbb{A}_\xi$ and let $\alpha_\xi = \alpha \upharpoonright \mathbb{A}_\xi$ for all $\xi < \omega_1$.

- We already mentioned that every automorphism of a countable Boolean algebra embeds in t^\uparrow, so fix an embedding $e_0 : \mathbb{A}_0 \to \mathcal{P}(\omega)/\text{fin}$ such that $e_0 \circ \alpha_0 = t^\uparrow \circ e_0$.

- Lift e_0 to an embedding e_1 of $\mathbb{A}_1 \supseteq \mathbb{A}_0$ into $\mathcal{P}(\omega)/\text{fin}$ such that $e_1 \circ \alpha_1 = t^\uparrow \circ e_1$.

- Continue this up through all the α_ξ, taking unions at limit stages.

- In the end, $e = \bigcup_{\xi < \omega_1} e_\xi$ embeds α in t^\uparrow.
a sketch of the proof: what won’t work

Perhaps the most obvious strategy for proving the universality of t^\uparrow is as follows:

- Begin with an automorphism $\alpha : A \to A$ where $|A| \leq \aleph_1$. Write A as an increasing union of countable, α-invariant subalgebras $\bigcup_{\xi < \omega_1} A_\xi$ and let $\alpha_\xi = \alpha \upharpoonright A_\xi$ for all $\xi < \omega_1$.

- We already mentioned that every automorphism of a countable Boolean algebra embeds in t^\uparrow, so fix an embedding $e_0 : A_0 \to \mathcal{P}(\omega)/\text{fin}$ such that $e_0 \circ \alpha_0 = t^\uparrow \circ e_0$.

- Lift e_0 to an embedding e_1 of $A_1 \supset A_0$ into $\mathcal{P}(\omega)/\text{fin}$ such that $e_1 \circ \alpha_1 = t^\uparrow \circ e_1$.

- Continue this up through all the α_ξ, taking unions at limit stages.

- In the end, $e = \bigcup_{\xi < \omega_1} e_\xi$ embeds α in t^\uparrow.
a sketch of the proof: how to fix it

This strategy does not work as stated, but it can be made to work by choosing the A_ξ more carefully. Specifically:

- Fix a continuous chain $\langle M_\xi : \xi < \omega_1 \rangle$ of countable elementary submodels of a suitable fragment of the set-theoretic universe.
- For each $\xi < \omega_1$, let $A_\xi = A \cap M_\xi$ and define $\alpha_\xi = \alpha \upharpoonright A_\xi$ as before.
- The elementarity between the models makes α_ξ behave nicely with respect to $\alpha_{\xi+1}$, and makes it possible for any $e_\xi : A_\xi \to \mathcal{P}(\omega)/\text{fin}$ embedding α_ξ into t^\uparrow to be lifted to some $e_{\xi+1} : A_{\xi+1} \to \mathcal{P}(\omega)/\text{fin}$ embedding $\alpha_{\xi+1}$ into t^\uparrow.
- Then the argument outlined on the previous slide can succeed.
what if CH fails?

Question

Is $\neg \text{CH}$ consistent with the existence of universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$? Might ZFC even imply the existence of such automorphisms?
what if CH fails?

Question

Is $\neg \text{CH}$ consistent with the existence of universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$? Might ZFC even imply the existence of such automorphisms?

I have no idea.
what if CH fails?

Question

Is \negCH consistent with the existence of universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$? Might ZFC even imply the existence of such automorphisms?

I have no idea. A more tractable question might be:

Question

Does OCA + MA imply the existence of universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$?
OCA + MA seems to decide most questions about $\mathcal{P}(\omega)/\text{fin}$, and work of Farah (and others) seems to indicate that it is something of an optimal hypothesis for ensuring $\mathcal{P}(\omega)/\text{fin}$ has as few self-maps as possible.
why OCA + MA?

OCA + MA seems to decide most questions about \(\mathcal{P}(\omega)/\text{fin} \), and work of Farah (and others) seems to indicate that it is something of an optimal hypothesis for ensuring \(\mathcal{P}(\omega)/\text{fin} \) has as few self-maps as possible. For example,

- OCA + MA implies that all automorphisms of \(\mathcal{P}(\omega)/\text{fin} \) are trivial.
why OCA + MA?

OCA + MA seems to decide most questions about $\mathcal{P}(\omega)/\text{fin}$, and work of Farah (and others) seems to indicate that it is something of an optimal hypothesis for ensuring $\mathcal{P}(\omega)/\text{fin}$ has as few self-maps as possible. For example,

- OCA + MA implies that all automorphisms of $\mathcal{P}(\omega)/\text{fin}$ are trivial.
- While ZFC implies the existence of nontrivial self-embeddings of $\mathcal{P}(\omega)/\text{fin}$ (by recent work of Dow), OCA + MA restricts the form of these embeddings, and ensures they are “close” to trivial.
why OCA + MA?

OCA + MA seems to decide most questions about $\mathcal{P}(\omega)/\text{fin}$, and work of Farah (and others) seems to indicate that it is something of an optimal hypothesis for ensuring $\mathcal{P}(\omega)/\text{fin}$ has as few self-maps as possible. For example,

- OCA + MA implies that all automorphisms of $\mathcal{P}(\omega)/\text{fin}$ are trivial.
- While ZFC implies the existence of nontrivial self-embeddings of $\mathcal{P}(\omega)/\text{fin}$ (by recent work of Dow), OCA + MA restricts the form of these embeddings, and ensures they are “close” to trivial.
- For example, OCA + MA implies that the shift map does not embed into its inverse, and vice versa.
two more permutations of \(\omega \)

Let \(r \) denote a permutation of \(\omega \) that consists of infinitely many finite cycles, one of size \(n! \) for every \(n \):

\[
\begin{array}{c}
\cdots \\
\vdots \\
\end{array}
\]

Let \(t \lor r \) denote the permutation of \(\omega \) obtained by putting a copy of \(t \) next to a copy of \(r \):

\[
\begin{array}{c}
\cdots \\
\vdots \\
\end{array}
\]
Every trivial automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in either t^\uparrow or in $(t \lor r)^\uparrow$.
universal automorphisms of $\mathcal{P}(\omega)/\text{fin}$
universal automorphisms with CH
universal automorphisms without CH

a jointly universal pair

Theorem

*Every trivial automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in either t^\uparrow or in $(t \lor r)^\uparrow$. Hence OCA + MA implies that every automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in either t^\uparrow or in $(t \lor r)^\uparrow$.**
Every trivial automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in either t^\uparrow or in $(t \lor r)^\uparrow$. Hence $\text{OCA} + \text{MA}$ implies that every automorphism of $\mathcal{P}(\omega)/\text{fin}$ embeds in either t^\uparrow or in $(t \lor r)^\uparrow$.

More specifically, if f is a mod-finite permutation of ω, then f^\uparrow embeds in t^\uparrow if it has no “cyclic part” (i.e., if f contains only finitely many finite cycles), and otherwise it embeds in $(t \lor r)^\uparrow$.

$\text{OCA} + \text{MA}$ implies that r^\uparrow does not embed in t^\uparrow.

Thus t^\uparrow is not universal under $\text{OCA} + \text{MA}$.
what about \((t \lor r)^\uparrow\)?

\[
\ldots \text{but } (t \lor r)^\uparrow \text{ might be.}
\]
what about $(t ∨ r)^↑$?

. . . but $(t ∨ r)^↑$ might be.

Recall that $ω^*$ denotes the Stone space of $\mathcal{P}(ω)/\text{fin}$, and that f^* denotes the self-homeomorphism of $ω^*$ induced by a mod-finite permutation f of $ω$; i.e., $f^* = \text{Stone}(f^↑)$.
what about \((t \vee r)^\uparrow\)?

\[\ldots \text{but } (t \vee r)^\uparrow \text{ might be.} \]

Recall that \(\omega^*\) denotes the Stone space of \(\mathcal{P}(\omega)/\text{fin}\), and that \(f^*\) denotes the self-homeomorphism of \(\omega^*\) induced by a mod-finite permutation \(f\) of \(\omega\); i.e., \(f^* = \text{Stone}(f^\uparrow)\).

Theorem

Assuming there are no nontrivial automorphisms of \(\mathcal{P}(\omega)/\text{fin}\) (e.g., under OCA + MA), then \((t \vee r)^\uparrow\) is universal if and only if there is a continuous function \(q : \omega^ \to \omega^*\) such that \(q \circ r^* = s^* \circ q\).*
what about \((t \lor r)^\uparrow\)?

. . . but \((t \lor r)^\uparrow\) might be.

Recall that \(\omega^*\) denotes the Stone space of \(\mathcal{P}(\omega)/\text{fin}\), and that \(f^*\) denotes the self-homeomorphism of \(\omega^*\) induced by a mod-finite permutation \(f\) of \(\omega\); i.e., \(f^* = \text{Stone}(f^\uparrow)\).

Theorem

Assuming there are no nontrivial automorphisms of \(\mathcal{P}(\omega)/\text{fin}\) (e.g., under OCA + MA), then \((t \lor r)^\uparrow\) is universal if and only if there is a continuous function \(q : \omega^ \to \omega^*\) such that \(q \circ r^* = s^* \circ q\).*

OCA + MA implies that any such function \(q\) must be nontrivial; i.e., it cannot be induced by a function \(\omega \to \beta \omega\).
open questions

Question

Is \((t \lor r)^\uparrow\) a universal automorphism of \(P(\omega)/\text{fin}\) under OCA + MA?
open questions

Question

Is \((t \vee r)^\uparrow\) a universal automorphism of \(\mathcal{P}(\omega)/\text{fin}\) under OCA + MA?

Question

Does every automorphism of \(\mathcal{P}(\omega)/\text{fin}\) embed in a trivial automorphism?
open questions

Question

Is $(t \lor r) \uparrow$ a universal automorphism of $\mathcal{P}(\omega)/\text{fin}$ under OCA + MA?

Question

Does every automorphism of $\mathcal{P}(\omega)/\text{fin}$ embed in a trivial automorphism?

Question

Does CH imply that the shift map is conjugate/isomorphic to its inverse?
The end

Thank you for listening