A Constructive View of Weak Topologies on a Topos

Zeinab Khanjanzadeh, Ali Madanshekaf

Semnan University

BLAST 2018
University of Denver, Colorado, USA
August 6-10 2018
Outline

In this talk:

- We introduce the notion of (productive) weak topology on a topos E and investigate some of its basic properties.
- We show that the set of all weak topologies on a complete topos E is a complete residuated lattice.
- We give an explicit description of a restricted associated sheaf functor on a topos E in two steps.
Outline

In this talk:

- we introduce the notion of (productive) weak topology on a topos \mathcal{E} and investigate some of its basic properties.

we show that the set of all weak topologies on a (co)complete topos \mathcal{E} is a complete resituated lattice.

we give an explicit description of a restricted associated sheaf functor on a topos \mathcal{E} in two steps.
In this talk:

- we introduce the notion of (productive) weak topology on a topos \mathcal{E} and investigate some of its basic properties.
- we show that the set of all weak topologies on a (co)complete topos \mathcal{E} is a complete resituated lattice.
In this talk:

- we introduce the notion of (productive) weak topology on a topos \mathcal{E} and investigate some of its basic properties.
- we show that the set of all weak topologies on a (co)complete topos \mathcal{E} is a complete resituated lattice.
- we give an explicit description of a restricted associated sheaf functor on a topos \mathcal{E} in two steps.
(Elementary) topos

Definition

An (elementary) topos is a category \mathcal{E} with finite limits, provided that the following conditions are satisfied:

1. \mathcal{E} is cartesian closed, i.e. all objects of \mathcal{E} are exponentiable;
2. \mathcal{E} has a subobject classifier, that is, an object Ω equipped with a monomorphism $\text{true}: 1 \rightarrowtail \Omega$ such that, given any monomorphism $m: S \rightarrow B$ in \mathcal{E}; there is a unique map $\text{char}(m): B \rightarrow \Omega$ (sometimes denoted by $\text{char}(S)$) for which the following square is a pullback:
(Elementary) topos

Definition

An (elementary) topos is a category \mathcal{E} with finite limits, provided that the following conditions are satisfied:

1. \mathcal{E} is *cartesian closed*, i.e. all objects of \mathcal{E} are exponentiable;
(Elementary) topos

Definition

An (elementary) topos is a category \mathcal{E} with finite limits, provided that the following conditions are satisfied:

1. \mathcal{E} is cartesian closed, i.e. all objects of \mathcal{E} are exponentiable;
2. \mathcal{E} has a subobject classifier, that is, an object Ω equipped with a monomorphism $\text{true} : 1 \rightarrow \Omega$ such that, given any monomorphism $m : S \rightarrow B$ in \mathcal{E}; there is a unique map $\text{char}(m) : B \rightarrow \Omega$ (sometimes denoted by $\text{char}(S)$) for which the following square is a pullback:

$$
\begin{array}{ccc}
S & \rightarrow & 1 \\
\downarrow m & & \downarrow \text{true} \\
B & \rightarrow & \Omega.
\end{array}
$$
Internal Heyting algebra structure of Ω

In fact, for each object B of \mathcal{E} we have a natural isomorphism in B as follows

$$\text{Sub}_\mathcal{E}(B) \cong \text{Hom}_\mathcal{E}(B, \Omega)$$

The subobject classifier Ω on a topos \mathcal{E} has an internal Heyting algebra structure. In details,
Internal Heyting algebra structure of Ω

In fact, for each object B of \mathcal{E} we have a natural isomorphism in B as follows

$$\text{Sub}_{\mathcal{E}}(B) \cong \text{Hom}_{\mathcal{E}}(B, \Omega)$$

The subobject classifier Ω on a topos \mathcal{E} has an internal Heyting algebra structure. In details,

1. The meet operation $\cap : \text{Sub}_{\mathcal{E}}(B) \times \text{Sub}_{\mathcal{E}}(B) \to \text{Sub}_{\mathcal{E}}(B)$ is natural in B. Under the isomorphism $\text{Hom}_{\mathcal{E}}(B, \Omega) \cong \text{Sub}_{\mathcal{E}}(B)$, which is again natural in B, we obtain an operation \wedge_B such that the following diagram is commutative:
Internal Heyting algebra structure of Ω

$$\begin{align*}
\text{Sub}_E(B) \times \text{Sub}_E(B) & \xrightarrow{\cap} \text{Sub}_E(B) \\
\text{Hom}_E(B, \Omega) \times \text{Hom}_E(B, \Omega) & \xrightarrow{\land_B} \text{Hom}_E(B, \Omega)
\end{align*}$$

Since the operation \land_B is natural in B, so by the Yoneda lemma \land_B comes from a uniquely determined map $\land = \land_{\Omega} \times \Omega$ via composition which is $\land = \land_{\Omega} \times \Omega (\text{id}_\Omega \times \Omega)$. The arrow \land is the internal meet operation on Ω.
Internal Heyting algebra structure of Ω

Since the operation \land_B is natural in B, so by the Yoneda lemma \land_B comes from a uniquely determined map $\land : \Omega \times \Omega \to \Omega$ via composition which is $\land = \land_{\Omega \times \Omega}(\text{id}_{\Omega \times \Omega})$. The arrow \land is the internal meet operation on Ω.
Similarly, we can define an internal join operation $\lor: \Omega \times \Omega \to \Omega$ and an internal implication operation $\Rightarrow: \Omega \times \Omega \to \Omega$ on Ω. Under the isomorphism $\text{Sub}_E(1) \cong \text{Hom}_E(1, \Omega)$, the top and bottom elements of $\text{Sub}_E(1)$ which are $1 \hookrightarrow 1$ and $0 \hookrightarrow 1$, respectively, correspond to the internal top and internal bottom elements "true" $= \text{char}(1 \hookrightarrow 1)$ and "false" $= \text{char}(0 \hookrightarrow 1)$ of Ω.
Similarly, we can define an internal join operation \(\lor : \Omega \times \Omega \to \Omega \) and an internal implication operation \(\Rightarrow : \Omega \times \Omega \to \Omega \) on \(\Omega \).

Under the isomorphism \(\text{Sub}_E(1) \cong \text{Hom}_E(1, \Omega) \), the top and bottom elements of \(\text{Sub}_E(1) \) which are \(1 \to 1 \) and \(0 \to 1 \), respectively, correspond to the internal top and internal bottom elements "true = char(1 \to 1)" and "false = char(0 \to 1)" of \(\Omega \).
Definition

A weak Lawvere-Tierney topology (or a weak topology, for short) on a topos \mathcal{E} is a morphism $j : \Omega \to \Omega$ such that:

1. $j \circ \text{true} = \text{true}$;
2. $j \circ \wedge \leq \wedge \circ (j \times j)$, in which \leq stands for the order on Ω.

Furthermore, j is productive whenever the non-equality in (2) is an equality.

An idempotent weak topology on \mathcal{E} is called a (Lawvere-Tierney) topology on \mathcal{E}.
Weak topologies

Definition

A weak Lawvere-Tierney topology (or a weak topology, for short) on a topos \mathcal{E} is a morphism $j : \Omega \to \Omega$ such that:

1. $j \circ \text{true} = \text{true}$;
Weak topologies

Definition

A weak Lawvere-Tierney topology (or a weak topology, for short) on a topos \mathcal{E} is a morphism $j : \Omega \to \Omega$ such that:

1. $j \circ \text{true} = \text{true}$;
2. $j \circ \land \leq \land \circ (j \times j)$, in which \leq stands for the order on Ω.

Zeinab Khanjanzadeh, Ali Madanshekaf
A Constructive View of Weak Topologies...
Weak topologies

Definition

A weak Lawvere-Tierney topology (or a weak topology, for short) on a topos \(\mathcal{E} \) is a morphism \(j : \Omega \to \Omega \) such that:

1. \(j \circ \text{true} = \text{true} \);
2. \(j \circ \wedge \leq \wedge \circ (j \times j) \), in which \(\leq \) stands for the order on \(\Omega \).

Furthermore, \(j \) is productive whenever the non-equality in (2) is an equality.
弱拓扑

定义

一个弱 Lawvere-Tierney 拓扑（或简称弱拓扑）在拓扑学上 E 是一个映射 $j : \Omega \to \Omega$ 且满足以下条件：

1. $j \circ \text{true} = \text{true}$；
2. $j \circ \land \leq \land \circ (j \times j)$，其中 \leq 表示 Ω 上的顺序。

此外，j 是 productivity 当且仅当条件 (2) 中的不等式成为等式。

一个 idempotent 的弱拓扑 E 被称为 (Lawvere-Tierney) 拓扑。
Some Examples of Weak Topologies

Example

The composite of any two topologies on a topos E is a productive weak topology. It is a topology on E if and only if it is idempotent.

It is well known that the commutative monoid of natural endomorphisms of the identity functor on a topos E is called the center of E. Let α be a natural endomorphism of the identity functor on E. It is easy to see that $\alpha \Omega$ is a productive weak topology on E. It will be a topology on E if $\alpha^2 \Omega = \alpha \Omega$.

Zeinab Khanjanzadeh, Ali Madanshekaf
A Constructive View of Weak Topologies ...
Some Examples of Weak Topologies

Example

1. The composite of any two topologies on a topos \mathcal{E} is a productive weak topology. It is a topology on \mathcal{E} if and only if it is idempotent.
Some Examples of Weak Topologies

Example

1. The composite of any two topologies on a topos E is a productive weak topology. It is a topology on E if and only if it is idempotent.

2. It is well known that the commutative monoid of natural endomorphisms of the identity functor on a topos E is called the center of E. Let α be a natural endomorphism of the identity functor on E. It is easy to see that α_Ω is a productive weak topology on E. It will be a topology on E if $\alpha^2_\Omega = \alpha_\Omega$.
Modal closure operators

Definition
An operator on the subobjects of each object E of \mathcal{E}

$$A \mapsto \overline{A}, \quad \text{Sub}_E(E) \rightarrow \text{Sub}_E(E),$$

is a modal closure operator if and only if it has, for all $A, B \in \text{Sub}_E(E)$, the properties:
Modal closure operators

Definition

An operator on the subobjects of each object E of \mathcal{E}

$$A \mapsto \overline{A}, \quad \text{Sub}_{\mathcal{E}}(E) \to \text{Sub}_{\mathcal{E}}(E),$$

is a modal closure operator if and only if it has, for all $A, B \in \text{Sub}_{\mathcal{E}}(E)$, the properties:

1. (Extension) $A \subseteq \overline{A}$;
Modal closure operators

Definition
An operator on the subobjects of each object E of \mathcal{E}

$$A \mapsto \overline{A}, \quad \text{Sub}_{\mathcal{E}}(E) \rightarrow \text{Sub}_{\mathcal{E}}(E),$$

is a modal closure operator if and only if it has, for all $A, B \in \text{Sub}_{\mathcal{E}}(E)$, the properties:

1. (Extension) $A \subseteq \overline{A}$;
2. (Monotonicity) $A \subseteq B$ yields that $\overline{A} \subseteq \overline{B}$;
Modal closure operators

Definition
An operator on the subobjects of each object E of \mathcal{E}

$$A \mapsto \overline{A}, \quad \text{Sub}_\mathcal{E}(E) \to \text{Sub}_\mathcal{E}(E),$$

is a modal closure operator if and only if it has, for all $A, B \in \text{Sub}_\mathcal{E}(E)$, the properties:

1. (Extension) $A \subseteq \overline{A}$;
2. (Monotonicity) $A \subseteq B$ yields that $\overline{A} \subseteq \overline{B}$;
3. (Modal) For each arrow $f : F \to E$ in \mathcal{E}, we have $\overline{f^{-1}(A)} = f^{-1}(\overline{A})$, where f^{-1} is the pullback functor.
Weak Topologies and Modal Closure Operators

Any weak topology \(j \) on \(E \), determines a modal closure operator \(A \mapsto \vec{A} \) on the subobjects \(A \hookrightarrow E \) of each object \(E \), in such a way that for any subobject \(A \overset{\iota}{\hookrightarrow} E \), the \(j \)-closure of \(A \) is the subobject \(A \) of \(E \) with the characteristic map \(j \text{char}(\iota) \), shown as in the diagram below:

\[
\begin{array}{ccc}
A & \rightarrow & E \\
\downarrow & & \downarrow \\
\iota & \rightarrow & \Omega \\
\end{array}
\]
Any weak topology \(j \) on \(E \), determines a modal closure operator \(A \mapsto \overline{A} \) on the subobjects \(A \hookrightarrow E \) of each object \(E \), in such a way that for any subobject \(A \hookrightarrow E \), the \(j \)-closure of \(A \) is the subobject \(\overline{A} \) of \(E \) with the characteristic map \(j \text{char}(\iota) \), shown as in the diagram below.

\[
\begin{array}{ccc}
\overline{A} & \rightarrow & 1 \\
\downarrow & & \downarrow \\
\iota & \rightarrow & \text{true} \\
\downarrow & & \downarrow \\
E & \rightarrow & 1 \\
\downarrow & & \downarrow \\
\iota & \rightarrow & \text{true} \\
\downarrow & & \downarrow \\
\overline{A} & \rightarrow & \Omega \\
\downarrow & & \downarrow \\
\iota & \rightarrow & \text{char}(\iota) \\
\downarrow & & \downarrow \\
E & \rightarrow & \Omega \\
\end{array}
\]
Conversely, any modal closure operator on a topos \mathcal{E} always gives a unique weak topology j as indicated in the following pullback diagram:

$$
\begin{array}{c}
\text{true} \\
\downarrow \\
\Omega \\
\downarrow \\
\text{true}
\end{array}
\quad
\begin{array}{c}
\mathbb{1} \\
\downarrow \\
\Omega \\
\downarrow \\
\mathbb{1}
\end{array}
\quad
\begin{array}{c}
\downarrow \\
\Omega
\end{array}
$$

One can prove that

Lemma

On a topos \mathcal{E}, weak topologies j are in one-to-one correspondence with modal closure operators (\cdot).
Conversely, any modal closure operator on a topos \mathcal{E} always gives a unique weak topology j as indicated in the following pullback diagram:

\[
\begin{array}{ccc}
\bar{1} & \longrightarrow & 1 \\
\downarrow & & \downarrow \\
\text{true} & \longrightarrow & \text{true} \\
\downarrow & & \downarrow \\
\Omega & \longrightarrow & \Omega \\
\end{array}
\]

One can prove that
Conversely, any modal closure operator on a topos \mathcal{E} always gives a unique weak topology j as indicated in the following pullback diagram:

\[
\begin{array}{ccc}
1 & \longrightarrow & 1 \\
\downarrow & & \downarrow \\
true & \swarrow & true \\
\Omega & \underset{j}{\longrightarrow} & \Omega \\
\end{array}
\]

One can prove that

Lemma

On a topos \mathcal{E}, weak topologies j are in one-to-one correspondence with modal closure operators $\overline{\cdot}$.
For a weak topology j on \mathcal{E}, it can be easily checked that $j \circ \wedge = \text{char}(\text{true} \times \text{true})$ and $\wedge \circ (j \times j) = \text{char}(\text{true} \times \text{true})$. So two subobjects 1×1 and 1×1 of $\Omega \times \Omega$, are not equal. This means that the modal closure operator associated to j, is not productive; that is the closure does not commute with products. We can prove that for a weak topology j on \mathcal{E}, the modal closure operator associated to j, is productive if and only if one has $j \circ \wedge = \wedge \circ (j \times j)$ if and only if the modal closure operator associated to j, commutes with binary intersections. For this reason, we call a weak topology j with the property $j \circ \wedge = \wedge \circ (j \times j)$ a productive weak topology.
For a weak topology j on E, it can be easily checked that $j \circ \land = \text{char}(\text{true} \times \text{true})$ and $\land \circ (j \times j) = \text{char}(\overline{\text{true}} \times \overline{\text{true}})$. So two subobjects 1×1 and 1×1 of $\Omega \times \Omega$, are not equal. This means that the modal closure operator associated to j, is not productive; that is the closure does not commute with products.
For a weak topology j on E, it can be easily checked that
\[j \circ \wedge = \text{char}(\text{true} \times \text{true}) \]
and
\[\wedge \circ (j \times j) = \text{char}(\text{true} \times \text{true}) \].
So two subobjects 1×1 and $\bar{1} \times \bar{1}$ of $\Omega \times \Omega$, are not equal. This means that the modal closure operator associated to j, is not \textit{productive}; that is the closure does not commute with products.
We can prove that for a weak topology j on E, the modal closure operator associated to j, \textit{is productive} if and only if one has $j \circ \wedge = \wedge \circ (j \times j)$ if and only if the modal closure operator associated to j, commutes with binary intersections.
For a weak topology j on \mathcal{E}, it can be easily checked that $j \circ \wedge = \text{char}(\text{true} \times \text{true})$ and $\wedge \circ (j \times j) = \text{char}(\text{true} \times \text{true})$. So two subobjects 1×1 and $\overline{1} \times \overline{1}$ of $\Omega \times \Omega$, are not equal. This means that the modal closure operator associated to j, is not productive; that is the closure does not commute with products.

We can prove that for a weak topology j on \mathcal{E}, the modal closure operator associated to j, is productive if and only if one has $j \circ \wedge = \wedge \circ (j \times j)$ if and only if the modal closure operator associated to j, commutes with binary intersections.

For this reason, we call a weak topology j with the property $j \circ \wedge = \wedge \circ (j \times j)$ a productive weak topology.
j-closed, j-dense, j-sheaf and j-separated

Definition

Let j be a weak topology on \mathcal{E} and $(\cdot\bar{\cdot})$ the modal closure operator associated to j. A monomorphism $k : A \hookrightarrow C$ in \mathcal{E} is

unique

We say that C is j-separated if the arrow g exists and is unique.
j-closed, j-dense, j-sheaf and j-separated

Definition

Let j be a weak topology on \mathcal{E} and (\cdot) the modal closure operator associated to j. A monomorphism $k : A \hookrightarrow C$ in \mathcal{E} is

- **j-dense** whenever $\overline{A} = C$, as subobjects of C;

...
j-closed, j-dense, j-sheaf and j-separated

Definition

Let j be a weak topology on \mathcal{E} and (\cdot) the modal closure operator associated to j. A monomorphism $k : A \rightarrowtail C$ in \mathcal{E} is

- **j-dense** whenever $\overline{A} = C$, as subobjects of C;
- **j-closed** if $\overline{A} = A$, as subobjects of C.

Moreover, an object C is called a **j-sheaf** whenever for any j-dense monomorphism $m : B \rightarrowtail A$, one can uniquely extend any arrow $h : B \rightarrow C$ in \mathcal{E} as follows:

\[
\begin{array}{c}
B \\
\downarrow \\
A \\
\downarrow \\
\downarrow \\
\downarrow \\
\downarrow \\
C \\
\end{array}
\]

We say that C is **j-separated** if the arrow g exists, it is unique.
Definition

Let \(j \) be a weak topology on \(\mathcal{E} \) and \((\cdot) \) the modal closure operator associated to \(j \). A monomorphism \(k : A \rightarrowtail C \) in \(\mathcal{E} \) is

- \(j \)-dense whenever \(\overline{A} = C \), as subobjects of \(C \);
- \(j \)-closed if \(\overline{A} = A \), as subobjects of \(C \).

Moreover, an object \(C \) is called a \(j \)-sheaf whenever for any \(j \)-dense monomorphism \(m : B \rightarrowtail A \), one can uniquely extend any arrow \(h : B \rightarrow C \) in \(\mathcal{E} \) to \(A \) as follows.
j-closed, j-dense, j-sheaf and j-separated

Definition

Let \(j \) be a weak topology on \(\mathcal{E} \) and \((\cdot) \) the modal closure operator associated to \(j \). A monomorphism \(k : A \hookrightarrow C \) in \(\mathcal{E} \) is

- **\(j \)-dense** whenever \(\overline{A} = C \), as subobjects of \(C \);
- **\(j \)-closed** if \(\overline{A} = A \), as subobjects of \(C \).

Moreover, an object \(C \) is called a **\(j \)-sheaf** whenever for any \(j \)-dense monomorphism \(m : B \hookrightarrow A \), one can uniquely extend any arrow \(h : B \to C \) in \(\mathcal{E} \) to \(A \) as follows

\[
\begin{array}{ccc}
B & \xrightarrow{h} & C \\
\downarrow m & \nearrow g & \\
A & &
\end{array}
\]
j-closed, j-dense, j-sheaf and j-separated

Definition

Let \(j \) be a weak topology on \(\mathcal{E} \) and \((\bar{\cdot}) \) the modal closure operator associated to \(j \). A monomorphism \(k : A \rightarrowtail C \) in \(\mathcal{E} \) is

- **j-dense** whenever \(\bar{A} = C \), as subobjects of \(C \);
- **j-closed** if \(\bar{A} = A \), as subobjects of \(C \).

Moreover, an object \(C \) is called a **j-sheaf** whenever for any \(j \)-dense monomorphism \(m : B \rightarrowtail A \), one can uniquely extend any arrow \(h : B \rightarrow C \) in \(\mathcal{E} \) to \(A \) as follows

\[
\begin{array}{ccc}
B & \xrightarrow{h} & C \\
\downarrow{m} & & \downarrow{g} \\
A & & \\
\end{array}
\]

We say that \(C \) is **j-separated** if the arrow \(g \) exists, it is unique.
Subobject classifier of closed subobjects

For a weak topology j on a topos \mathcal{E},
Subobject classifier of closed subobjects

For a weak topology \(j \) on a topos \(\mathcal{E} \),

- We will denote the equalizer of two arrows \(j, \text{id}_\Omega : \Omega \to \Omega \) by \(\Omega_j \) as follows

\[
\Omega_j \xrightarrow{m} \Omega \xrightarrow{j} \Omega \xrightarrow{\text{id}_\Omega} \Omega.
\]
Subobject classifier of closed subobjects

For a weak topology j on a topos E,

- We will denote the equalizer of two arrows $j, \text{id}_\Omega : \Omega \to \Omega$ by Ω_j as follows

$$\Omega_j \xrightarrow{m} \Omega \xrightarrow{j} \Omega \xrightarrow{\text{id}_\Omega} \Omega.$$

The object Ω_j classifies closed subobjects, in the sense that, for each object E of E, there is a bijection

$$\text{Hom}_E(E, \Omega_j) \sim \text{ClSub}_E(E);$$

which is natural in E. Here $\text{ClSub}_E(E)$ is the set of all closed subobjects of E.
For a weak topology j on a topos \mathcal{E},
Some Notations

For a weak topology j on a topos \mathcal{E},

- We will denote the full subcategories of \mathcal{E} consisting of all j-separated objects and j-sheaves by $\text{Sh}_j(\mathcal{E})$ and $\text{Sep}_j(\mathcal{E})$, respectively. One can check that for a productive weak topology j on \mathcal{E}, $\text{Sh}_j(\mathcal{E})$ is a topos with the subobject classifier Ω_j.
Some Notations

For a weak topology j on a topos \mathcal{E},

- We will denote the full subcategories of \mathcal{E} consisting of all j-separated objects and j-sheaves by $\text{Sh}_j(\mathcal{E})$ and $\text{Sep}_j(\mathcal{E})$, respectively. One can check that for a productive weak topology j on \mathcal{E}, $\text{Sh}_j(\mathcal{E})$ is a topos with the subobject classifier Ω_j.

- We will denote the image of the weak topology j by $\text{im}(j)$, that is the smallest subobject $k : \text{im}(j) \hookrightarrow \Omega$ which j can factor through it.
The following proposition is the basic difference between weak topologies and topologies on \mathcal{E}. It shows that we are unable to construct the associated sheaf functor to a weak topology j on \mathcal{E} as usual.
The following proposition is the basic difference between weak topologies and topologies on E. It shows that we are unable to construct the associated sheaf functor to a weak topology j on E as usual.

Proposition

For a weak topology j on a topos E, we factor j through its image as

$$\Omega \xrightarrow{r} \text{im}(j) \xrightarrow{k} \Omega.$$

Then j is idempotent (or equivalently, is a topology on E) if and only if $\Omega_j = \text{im}(j)$, as subobjects of Ω.

Remark

The set of (productive) weak topologies on a topos \(\mathcal{E} \) has a natural partial order given by \(j \leq k \) if and only if \(j = j \land k \), for any (productive) weak topologies \(j, k : \Omega \to \Omega \), where \(j \land k \) is the composite arrow \(\Omega \xrightarrow{(j,k)} \Omega \times \Omega \xrightarrow{\land} \Omega \).
Remark

- The set of (productive) weak topologies on a topos \mathcal{E} has a natural partial order given by $j \leq k$ if and only if $j = j \wedge k$, for any (productive) weak topologies $j, k : \Omega \to \Omega$, where $j \wedge k$ is the composite arrow $\Omega \xrightarrow{(j,k)} \Omega \times \Omega \xrightarrow{\wedge} \Omega$.

- We denote by $\text{WTop}(\mathcal{E})$, $\text{PWTOP}(\mathcal{E})$ and $\text{Top}(\mathcal{E})$ for the posets of weak topologies, productive weak topologies and topologies on \mathcal{E}, respectively. It is clear that

$$\text{Top}(\mathcal{E}) \subseteq \text{PWTOP}(\mathcal{E}) \subseteq \text{WTop}(\mathcal{E}).$$

Notice that all these posets have the same binary meets which is pointwise, and also they have the top and bottom elements which are $\text{true} \circ \text{!}_\Omega$ and id_Ω, respectively.
The Residuated Lattice of Weak Topologies

It is clear that \((\text{WT}op(\mathcal{E}), \circ, \text{id}_\Omega)\) is a monoid in which \(\circ\) is the ordinary composition of weak topologies on \(\mathcal{E}\).
The Residuated Lattice of Weak Topologies

It is clear that \((\text{WTop}(\mathcal{E}), \circ, \text{id}_\Omega)\) is a monoid in which \(\circ\) is the ordinary composition of weak topologies on \(\mathcal{E}\).

Let \(\mathcal{E}\) be a (co)complete topos. We define two binary operations \(\setminus\) and \(\div\) on \(\text{WTop}(\mathcal{E})\) given by

\[
 j \setminus k = \bigwedge \{j' | j' \in \text{WTop}(\mathcal{E}), j \circ j' \geq k\},
\]

and

\[
 k \div j = \bigwedge \{j' | j' \in \text{WTop}(\mathcal{E}), j' \circ j \geq k\},
\]

for weak topologies \(j\) and \(k\) on \(\mathcal{E}\).
The Residuated Lattice of Weak Topologies

It is clear that \((\text{WTop}(\mathcal{E}), \circ, \text{id}_{\Omega})\) is a monoid in which \(\circ\) is the ordinary composition of weak topologies on \(\mathcal{E}\).

Let \(\mathcal{E}\) be a (co)complete topos. We define two binary operations \(\setminus\) and \(/\) on \(\text{WTop}(\mathcal{E})\) given by

\[
 j \setminus k = \bigwedge \{ j' | j' \in \text{WTop}(\mathcal{E}), \ j \circ j' \geq k \},
\]

and

\[
 k / j = \bigwedge \{ j' | j' \in \text{WTop}(\mathcal{E}), \ j' \circ j \geq k \},
\]

for weak topologies \(j\) and \(k\) on \(\mathcal{E}\). It is easily seen that we have

\[
 j \circ j' \geq k \iff j \geq k / j' \iff j' \geq j \setminus k.
\]

The desired result now is:
The Residuated Lattice of Weak Topologies

It is clear that \((\text{WTop}(\mathcal{E}), \circ, \text{id}_\Omega)\) is a monoid in which \(\circ\) is the ordinary composition of weak topologies on \(\mathcal{E}\).

Let \(\mathcal{E}\) be a (co)complete topos. We define two binary operations \(\setminus\) and \(/\) on \(\text{WTop}(\mathcal{E})\) given by

\[
 j \setminus k = \bigwedge \{ j'| j' \in \text{WTop}(\mathcal{E}), \ j \circ j' \geq k \},
\]

and

\[
 k / j = \bigwedge \{ j'| j' \in \text{WTop}(\mathcal{E}), \ j' \circ j \geq k \},
\]

for weak topologies \(j\) and \(k\) on \(\mathcal{E}\). It is easily seen that we have

\[
 j \circ j' \geq k \iff j \geq k / j' \iff j' \geq j \setminus k.
\]

The desired result now is:

Theorem

Let \(\mathcal{E}\) be a (co)complete topos. Then, \((\text{WTop}(\mathcal{E}), \land, \lor, \circ, \text{id}_\Omega, \setminus, /)\) is a complete residuated lattice.
Idempotent Hull of a (Productive) Weak Topology

Let \mathcal{E} be a cocomplete topos and j a (productive) weak topology on \mathcal{E}. We define the ascending extended ordinal chain of (productive) weak topologies

$$j \leq j^2 \leq j^3 \leq \ldots \leq j^\alpha \leq j^{\alpha+1} \leq \ldots \leq j^\infty \leq j^{\infty+1}$$

in which:

$$j^{\alpha+1} = j \circ j^\alpha, \quad j^\beta = \bigvee_{\gamma<\beta} j^\gamma$$

for every (small) ordinal number α and for $\alpha = \infty$, and for every limit ordinal β and for $\beta = \infty$; here $\infty, \infty + 1$ are (new) elements with $\infty + 1 > \infty > \alpha$ for all $\alpha \in \text{Ord}$, the class of small ordinals. Then,
Idempotent Hull of a (Productive) Weak Topology

Let \mathcal{E} be a cocomplete topos and j a (productive) weak topology on \mathcal{E}. We define the ascending extended ordinal chain of (productive) weak topologies

$$j \leq j^2 \leq j^3 \leq \ldots \leq j^\alpha \leq j^{\alpha+1} \leq \ldots \leq j^\infty \leq j^{\infty+1}$$

in which:

$$j^{\alpha+1} = j \circ j^\alpha, \quad j^\beta = \bigvee_{\gamma < \beta} j^\gamma$$

for every (small) ordinal number α and for $\alpha = \infty$, and for every limit ordinal β and for $\beta = \infty$; here $\infty, \infty + 1$ are (new) elements with $\infty + 1 > \infty > \alpha$ for all $\alpha \in \text{Ord}$, the class of small ordinals. Then,

Proposition

Let j be a (productive) weak topology on a cocomplete topos \mathcal{E}. Then j^∞ is the idempotent hull of j, i.e. the smallest topology containing j. Moreover, one has $\text{Sh}_{j^\infty}(\mathcal{E}) = \bigcap_{\gamma < \infty} \text{Sh}_{j^\gamma}(\mathcal{E})$, as full subcategories of \mathcal{E}.
Weak Topologies and Join of a Set of Topologies

For a cocomplete topos \mathcal{E}, the inclusion functor

$$U : \text{Top}(\mathcal{E}) \hookrightarrow \text{WTop}(\mathcal{E})$$

(or $U : \text{Top}(\mathcal{E}) \hookrightarrow \text{PWTop}(\mathcal{E})$) has a left adjoint,

$$F : \text{WTop}(\mathcal{E}) \rightarrow \text{Top}(\mathcal{E})$$

which, as any left adjoint to an inclusion, assigns to each (productive) weak topology j the least topology j^∞ with $j \leq j^\infty$, we call it the topological reflection of j.

Thus, the join of a set of topologies $\{j_\alpha\}_{\alpha \in \Lambda}$ on \mathcal{E} is the topological reflection of its join in $\text{WTop}(\mathcal{E})$, i.e. $(\bigvee_{\alpha \in \Lambda} U(j_\alpha))^\infty$.

Note that for a cocomplete topos \mathcal{E}, the subobject classifier Ω has arbitrary joins.
Weak Topologies and Join of a Set of Topologies

For a cocomplete topos \mathcal{E}, the inclusion functor

$$U : \text{Top}(\mathcal{E}) \hookrightarrow \text{WTop}(\mathcal{E})$$

(or $U : \text{Top}(\mathcal{E}) \hookrightarrow \text{PWTop}(\mathcal{E})$) has a left adjoint,

$$F : \text{WTop}(\mathcal{E}) \rightarrow \text{Top}(\mathcal{E})$$

which, as any left adjoint to an inclusion, assigns to each (productive) weak topology j the least topology j^∞ with $j \leq j^\infty$, we call it the **topological reflection** of j. Thus, the join of a set of topologies $\{j_\alpha\}_{\alpha \in \Lambda}$ on \mathcal{E} is the topological reflection of its join in $\text{WTop}(\mathcal{E})$, i.e. $\left(\bigvee_{\alpha \in \Lambda} U(j_\alpha)\right)^\infty$.
For a cocomplete topos \mathcal{E}, the inclusion functor

$$U : \text{Top}(\mathcal{E}) \hookrightarrow \text{WTop}(\mathcal{E})$$

(or $U : \text{Top}(\mathcal{E}) \hookrightarrow \text{PWTop}(\mathcal{E})$) has a left adjoint,

$$F : \text{WTop}(\mathcal{E}) \rightarrow \text{Top}(\mathcal{E})$$

which, as any left adjoint to an inclusion, assigns to each (productive) weak topology j the least topology j^∞ with $j \leq j^\infty$, we call it the **topological reflection** of j. Thus, the join of a set of topologies $\{j_\alpha\}_{\alpha \in \Lambda}$ on \mathcal{E} is the topological reflection of its join in $\text{WTop}(\mathcal{E})$, i.e. $((\bigvee_{\alpha \in \Lambda} U(j_\alpha))^\infty)$. Note that for a cocomplete topos \mathcal{E}, the subobject classifier Ω has arbitrary joins.
Some Notations

Let j be a weak topology on E and E an object of E. We assume that $\Omega \hookrightarrow \text{im}(j)$ and $\Theta \hookrightarrow \Omega$ be the image factorization of j and $E \twoheadrightarrow S \hookrightarrow \text{im}(j)$ be the image factorization of the compound arrow $E \{\cdot\} E \rightarrow \text{im}(j)$ in which $\{\cdot\}_E : E \hookrightarrow \Omega$ stands for the transpose of the characteristic map of the diagonal $\Delta_E : E \rightarrow E \times E$ which is the arrow $(\text{id}_E, \text{id}_E)$.

For a productive weak topology j on a topos E, we write C_j for the full subcategory of E consisting of all objects E of E for which the subobject Δ_E of $E \times E$ is closed.
Let j be a weak topology on \mathcal{E} and E an object of \mathcal{E}. We assume that $\Omega \xrightarrow{r} \text{im}(j) \xleftarrow{k} \Omega$ be the image factorization of j and $E \xrightarrow{\theta_E} S_E \xrightarrow{\omega_E} \text{im}(j)^E$ the image factorization of the compound arrow $r^E \{\cdot\}_E : E \rightarrow \text{im}(j)^E$ in which $\{\cdot\}_E : E \xrightarrow{} \Omega^E$ stands for the transpose of the characteristic map of the diagonal $\triangle_E : E \rightarrow E \times E$ which is the arrow $(\text{id}_E, \text{id}_E)$.
Some Notations

- Let j be a weak topology on \mathcal{E} and E an object of \mathcal{E}. We assume that $\Omega \xrightarrow{r} \text{im}(j) \xleftarrow{k} \Omega$ be the image factorization of j and $E \xrightarrow{\theta_E} S_E \xrightarrow{\omega_E} \text{im}(j)^E$ the image factorization of the compound arrow $r^E\{\cdot\}_E : E \to \text{im}(j)^E$ in which $\{\cdot\}_E : E \mapsto \Omega^E$ stands for the transpose of the characteristic map of the diagonal $\triangle_E : E \to E \times E$ which is the arrow $(\text{id}_E, \text{id}_E)$.

- For a productive weak topology j on a topos \mathcal{E}, we write C_j for the full subcategory of \mathcal{E} consisting of all objects E of \mathcal{E} for which the subobject $\overline{\triangle}_E$ of $E \times E$ is closed.
Characterization of the objects of C_j

The following characterizes the objects of C_j for a weak topology j on E.
Characterization of the objects of C_j

The following characterizes the objects of C_j for a weak topology j on E.

Lemma

For a weak topology j on a topos E and for any object E of E the following are equivalent:

(i) E is separated;

(ii) the diagonal $\Delta E \in \text{Sub}_E(E \times E)$ is a closed subobject of $E \times E$;

(iii) $j_\cdot \circ \{\cdot\}_E = \{\cdot\}_E$, as in the commutative diagram

$E \xrightarrow{\{\cdot\}_E} \Omega E \xleftarrow{j_\cdot} \Omega E$;

(iv) for any $f: A \to E$, the graph of f which is $(\text{id}_A, f): A \to A \times E$, is a closed subobject of $A \times E$.

Zeinab Khanjanzadeh, Ali Madanshekaf (Semnan University)
A Constructive View of Weak Topologies...
Characterization of the objects of C_j

The following characterizes the objects of C_j for a weak topology j on \mathcal{E}.

Lemma

For a weak topology j on a topos \mathcal{E} and for any object E of \mathcal{E} the following are equivalent:

(i) E is separated;

(ii) the diagonal $\triangle E \in \text{Sub}_{\mathcal{E}}(E \times E)$ is a closed subobject of $E \times E$;

(iii) $j_E \circ \{\cdot\}_E = \{\cdot\}_E$, as in the commutative diagram:

\[
\begin{array}{ccc}
E & \xrightarrow{\{\cdot\}_E} & \Omega_E \\
\downarrow & & \downarrow \\
\Omega_E & \xrightarrow{j_E} & \Omega_E \\
\end{array}
\]

(iv) for any $f: A \to E$, the graph of f which is $(\text{id}_A, f): A \entrace A \times E$, is a closed subobject of $A \times E$.

Zeinab Khanjanzadeh, Ali Madanshekaf (Semnan University)
Characterization of the objects of \mathcal{C}_j

The following characterizes the objects of \mathcal{C}_j for a weak topology j on \mathcal{E}.

Lemma

For a weak topology j on a topos \mathcal{E} and for any object E of \mathcal{E} the following are equivalent:

(i) E is separated;

(ii) the diagonal $\Delta_E \in \text{Sub}_\mathcal{E}(E \times E)$ is a closed subobject of $E \times E$;

(iii) $j_E \circ \{\cdot\}_E = \{\cdot\}_E$, as in the commutative diagram

\[
\begin{array}{c}
\begin{array}{ccc}
E & \rightarrow & \Delta_E \\
\downarrow & & \downarrow \\
\{\cdot\}_E & \rightarrow & \Omega \\
\end{array}
\end{array}
\]

(iv) for any $f : A \rightarrow E$, the graph of f which is $(\text{id}_A, f) : A \hookrightarrow A \times E$, is a closed subobject of $A \times E$.
Characterization of the objects of \mathcal{C}_j

The following characterizes the objects of \mathcal{C}_j for a weak topology j on \mathcal{E}.

Lemma

For a weak topology j on a topos \mathcal{E} and for any object E of \mathcal{E} the following are equivalent:

(i) E is separated;
(ii) the diagonal $\triangle_E \in \text{Sub}_\mathcal{E}(E \times E)$ is a closed subobject of $E \times E$;
(iii) $j^E \circ \{\cdot\}_E = \{\cdot\}_E$, as in the commutative diagram

![Diagram]

Zeinab Khanjanzadeh, Ali Madanshekaf

A Constructive View of Weak Topologies ...

August 6-10 2018 22 / 29
Characterization of the objects of \mathcal{C}_j

The following characterizes the objects of \mathcal{C}_j for a weak topology j on \mathcal{E}.

Lemma

For a weak topology j on a topos \mathcal{E} and for any object E of \mathcal{E} the following are equivalent:

(i) E is separated;

(ii) the diagonal $\triangle_E \in \text{Sub}_\mathcal{E}(E \times E)$ is a closed subobject of $E \times E$;

(iii) $j^E \circ \{\cdot\}_E = \{\cdot\}_E$, as in the commutative diagram

\[
\begin{array}{ccc}
E & \xrightarrow{\{\cdot\}_E} & \Omega^E \\
\downarrow \{\cdot\}_E & & \downarrow j^E \\
\Omega^E & & \\
\end{array}
\]

(iv) for any $f : A \rightarrow E$, the graph of f which is $(\text{id}_A, f) : A \rightarrow A \times E$, is a closed subobject of $A \times E$.
Now, we will give an explicit description of a restricted associated sheaf functor on \mathcal{E} in two steps:

First, one can deduce that:

Theorem For any productive weak topology j on a topos \mathcal{E}, the inclusion functor $\text{Sep}^j(\mathcal{E}) \hookrightarrow \mathcal{C}^j$ has a left adjoint $L: \mathcal{C}^j \to \text{Sep}^j(\mathcal{E})$ defined by $E \mapsto \mathcal{S}^E$.

Let E be a complete, cocomplete and well-copowered topos and j a productive weak topology on \mathcal{E}. Then, it is well known that the inclusion functor $\text{Sep}^j(\mathcal{E}) \hookrightarrow \mathcal{E}$ has a left adjoint $R: \mathcal{E} \to \text{Sep}^j(\mathcal{E})$.

One can construct the functor R via the adjoint functor theorem.
First Part of the Restricted Associated Sheaf Functor

Now, we will give an explicit description of a restricted associated sheaf functor on \mathcal{E} in two steps:

First, one can deduce that:

Theorem

For any productive weak topology j on a topos \mathcal{E}, the inclusion functor $\text{Sep}_j(\mathcal{E}) \hookrightarrow \mathcal{C}_j$ has a left adjoint $L : \mathcal{C}_j \longrightarrow \text{Sep}_j(\mathcal{E})$ defined by $E \mapsto S_E$.
Now, we will give an explicit description of a restricted associated sheaf functor on \mathcal{E} in two steps:
First, one can deduce that:

Theorem

For any productive weak topology j on a topos \mathcal{E}, the inclusion functor $\text{Sep}_j(\mathcal{E}) \hookrightarrow \mathcal{C}_j$ has a left adjoint $L : \mathcal{C}_j \longrightarrow \text{Sep}_j(\mathcal{E})$ defined by $E \mapsto S_E$.

- Let \mathcal{E} be a complete, cocomplete and well-copowered topos and j a productive weak topology on \mathcal{E}. Then, it is well known that the inclusion functor $\text{Sep}_j(\mathcal{E}) \hookrightarrow \mathcal{E}$ has a left adjoint $R : \mathcal{E} \longrightarrow \text{Sep}_j(\mathcal{E})$. One can construct the functor R via the adjoint functor theorem.
Let j be a weak topology on a topos \mathcal{E}. For any separated object E of \mathcal{E} the diagonal \triangle_E is a closed subobject of $E \times E$. In this case, the characteristic map of \triangle_E denoted by $\delta_E : E \times E \to \Omega$ satisfies $j\delta_E = \delta_E$. Since Ω_j is the equalizer of j and id_Ω, so there is a unique arrow

$$\alpha_E : E \times E \to \Omega_j \quad \text{s.t.} \quad m\alpha_E = \delta_E.$$

We denote the exponential transpose of α_E by $\hat{\alpha}_E : E \to \Omega^E_j$. Then we have:
Some Notation

Let j be a weak topology on a topos \mathcal{E}. For any separated object E of \mathcal{E} the diagonal \triangle_E is a closed subobject of $E \times E$. In this case, the characteristic map of \triangle_E denoted by $\delta_E : E \times E \to \Omega$ satisfies $j\delta_E = \delta_E$. Since Ω_j is the equalizer of j and id_Ω, so there is a unique arrow

$$\alpha_E : E \times E \to \Omega_j \quad \text{s.t.} \quad m\alpha_E = \delta_E.$$

We denote the exponential transpose of α_E by $\hat{\alpha}_E : E \to \Omega^E_j$. Then we have:

Lemma

Let j be a weak topology on a topos \mathcal{E} and E a separated object of \mathcal{E}. Then the arrow $\hat{\alpha}_E$ as defined before, is a monomorphism.
Second Part of the Restricted Associated Sheaf Functor

In what follows we provide the sheaf associated to a separated object in a topos \mathcal{E}.
Second Part of the Restricted Associated Sheaf Functor

In what follows we provide the sheaf associated to a separated object in a topos \(\mathcal{E} \).

Theorem

Let \(j \) be a productive weak topology on a topos \(\mathcal{E} \) and \(E \) a separated object of \(\mathcal{E} \). Let \(\overline{E} \) be the closure of \(E \) as a subobject of \(\Omega^E_j \) via the arrow \(\hat{\alpha}_E : E \hookrightarrow \Omega^E_j \). Then \(\overline{E} \) is a \(j \)-sheaf in \(\mathcal{E} \).

Moreover, the inclusion functor \(\text{Sh}_j(\mathcal{E}) \hookrightarrow \text{Sep}_j(\mathcal{E}) \) has a left adjoint \(S : \text{Sep}_j(\mathcal{E}) \rightarrow \text{Sh}_j(\mathcal{E}) \) defined by \(E \mapsto \overline{E} \) as a subobject of \(\Omega^E_j \).
In what follows we provide the associated sheaf functor with respect to the weak topology j on \mathcal{E}.

Corollary: We can constitute the compound left adjoint $\mathbf{SL}: \mathbf{C}_j \rightarrow \mathbf{Sh}_j(\mathcal{E})$ to the inclusion functor $\mathbf{Sh}_j(\mathcal{E}) \rightarrowtail \mathbf{C}_j$ which assigns to any E of \mathbf{C}_j the sheaf S_E as a subobject of $\Omega^{S_E}_j$.

In the case of a complete, cocomplete and well-copowered topos \mathcal{E} the inclusion functor $\mathbf{Sh}_j(\mathcal{E}) \rightarrowtail \mathcal{E}$ has the compound left adjoint $\mathbf{SR}: \mathcal{E} \rightarrow \mathbf{Sh}_j(\mathcal{E})$.

Zeinab Khanjanzadeh, Ali Madanshekaf (Semnan University)
In what follows we provide the associated sheaf functor with respect to the weak topology j on \mathcal{E}.

Corollary

We can constitute the compound left adjoint $SL : \mathcal{C}_j \rightarrow \mathbf{Sh}_j(\mathcal{E})$ to the inclusion functor $\mathbf{Sh}_j(\mathcal{E}) \hookrightarrow \mathcal{C}_j$ which assigns to any E of \mathcal{C}_j the sheaf \overline{S}_E as a subobject of $\Omega_{\mathcal{C}_j}^{S_E}$.
Conclusion

In what follows we provide the associated sheaf functor with respect to the weak topology \(j \) on \(\mathcal{E} \).

Corollary

We can constitute the compound left adjoint \(SL : C_j \rightarrow \mathbf{Sh}_j(\mathcal{E}) \) to the inclusion functor \(\mathbf{Sh}_j(\mathcal{E}) \hookrightarrow C_j \) which assigns to any \(E \) of \(C_j \) the sheaf \(\overline{S}_E \) as a subobject of \(\Omega_j^{\overline{S}_E} \).

In the case of a complete, cocomplete and well-copowered topos \(\mathcal{E} \) the inclusion functor \(\mathbf{Sh}_j(\mathcal{E}) \hookrightarrow \mathcal{E} \) has the compound left adjoint \(SR : \mathcal{E} \rightarrow \mathbf{Sh}_j(\mathcal{E}) \).
Sheaves in the category of separated objects

We can define a weak topology (modal closure operator) on a category with finite limits. Hence, for a weak topology \(j \) on a topos \(\mathcal{E} \), the notion of \(j \)-sheaves can be defined in the finite complete category \(\text{Sep}_j(\mathcal{E}) \).
We can define a **weak topology (modal closure operator)** on a category with finite limits. Hence, for a weak topology \(j \) on a topos \(E \), the notion of \(j \)-sheaves can be defined in the finite complete category \(\text{Sep}_j(E) \). The following determines \(j \)-sheaves in \(\text{Sep}_j(E) \).
Sheaves in the category of separated objects

We can define a **weak topology (modal closure operator)** on a category with finite limits. Hence, for a weak topology j on a topos \mathcal{E}, the notion of j-sheaves can be defined in the finite complete category $\text{Sep}_j(\mathcal{E})$. The following determines j-sheaves in $\text{Sep}_j(\mathcal{E})$.

Proposition

Let j be a productive weak topology on \mathcal{E} and E a separated object of \mathcal{E}. Then the following conditions are equivalent:

1. E is a j-sheaf in $\text{Sep}_j(\mathcal{E})$;
2. E is a j-sheaf in \mathcal{E};
3. E is closed in $\Omega^j_{\mathcal{E}}$, by the monic $\hat{\alpha}_E : E \rightarrow \Omega^j_{\mathcal{E}}$.

Sheaves in the category of separated objects

We can define a weak topology (modal closure operator) on a category with finite limits. Hence, for a weak topology j on a topos \mathcal{E}, the notion of j-sheaves can be defined in the finite complete category $\text{Sep}_j(\mathcal{E})$. The following determines j-sheaves in $\text{Sep}_j(\mathcal{E})$.

Proposition

Let j be a productive weak topology on \mathcal{E} and E a separated object of \mathcal{E}. Then the following conditions are equivalent:

(i) E is a j-sheaf in $\text{Sep}_j(\mathcal{E})$;
Sheaves in the category of separated objects

We can define a *weak topology (modal closure operator)* on a category with finite limits. Hence, for a weak topology j on a topos \mathcal{E}, the notion of j-sheaves can be defined in the finite complete category $\mathbf{Sep}_j(\mathcal{E})$. The following determines j-sheaves in $\mathbf{Sep}_j(\mathcal{E})$.

Proposition

Let j be a productive weak topology on \mathcal{E} and E a separated object of \mathcal{E}. Then the following conditions are equivalent:

(i) E is a j-sheaf in $\mathbf{Sep}_j(\mathcal{E})$;

(ii) E is a j-sheaf in \mathcal{E};
Sheaves in the category of separated objects

We can define a *weak topology (modal closure operator)* on a category with finite limits. Hence, for a weak topology \(j \) on a topos \(\mathcal{E} \), the notion of \(j \)-sheaves can be defined in the finite complete category \(\text{Sep}_j(\mathcal{E}) \). The following determines \(j \)-sheaves in \(\text{Sep}_j(\mathcal{E}) \).

Proposition

Let \(j \) be a productive weak topology on \(\mathcal{E} \) and \(E \) a separated object of \(\mathcal{E} \). Then the following conditions are equivalent:

1. \(E \) is a \(j \)-sheaf in \(\text{Sep}_j(\mathcal{E}) \);
2. \(E \) is a \(j \)-sheaf in \(\mathcal{E} \);
3. \(E \) is closed in \(\Omega^E_j \), by the monic \(\hat{\alpha}_E : E \rightarrow \Omega^E_j \).
References

F. Borceux,
Handbook of Categorical Algebra, Vol. I and III,

D. Dikranjan and W. Tholen,
Categorical Structure of Closure Operators,

S. N. Hosseini and S. SH. Mousavi,
A Relation Between Closure Operators on a Small Category and Its Category of Presheaves,

P. T. Johnstone,
Sketches of an Elephant: a Topos Theory Compendium, Vol. 1,

S. Mac Lane and I. Moerdijk,
Sheaves in Geometry and Logic,
Thank You For Your Attention!