Homeomorphisms of Čech-Stone remainders: the zero-dimensional case

Paul McKenney
Joint work with Ilijas Farah

BLAST 2018
Given a topological space X, let $X^* = \beta X \setminus X$ denote its Čech-Stone remainder.
Given a topological space X, let $X^* = \beta X \setminus X$ denote its Čech-Stone remainder.

Question

If $X^ \simeq Y^*$, how similar do X and Y have to be?*
Given a topological space \(X \), let \(X^\ast = \beta X \setminus X \) denote its Čech-Stone remainder.

Question

If \(X^\ast \simeq Y^\ast \), how similar do \(X \) and \(Y \) have to be?

Theorem (Parovicenko)

Assume the Continuum Hypothesis. Then for every zero-dimensional, locally compact, noncompact, Hausdorff space \(X \), \(X^\ast \simeq \omega^\ast \).
Theorem (Parovicenko)

Assume the Continuum Hypothesis. Then for every zero-dimensional, locally compact, noncompact, Hausdorff space X, $X^* \cong \omega^*$.

Sketch.

Let $C(X)$ denote the Boolean algebra of clopen subsets of X, and $K(X)$ its ideal of compact-open sets. Then by Stone duality, it's enough to prove that $C(X)/K(X) \cong P(\omega)/\text{fin.}$ These Boolean algebras are both countably saturated and have size $c = \aleph_1$. A back-and-forth argument finishes the proof.
Theorem (Parovicenko)

Assume the Continuum Hypothesis. Then for every zero-dimensional, locally compact, noncompact, Hausdorff space \(X \), \(X^* \cong \omega^* \).

Sketch.

Let \(\mathcal{C}(X) \) denote the Boolean algebra of clopen subsets of \(X \), and \(\mathcal{K}(X) \) its ideal of compact-open sets.
Theorem (Parovicenko)

Assume the Continuum Hypothesis. Then for every zero-dimensional, locally compact, noncompact, Hausdorff space X, $X^* \simeq \omega^*$.

Sketch.

Let $C(X)$ denote the Boolean algebra of clopen subsets of X, and $K(X)$ its ideal of compact-open sets. Then by Stone duality, it’s enough to prove that $C(X)/K(X) \simeq \mathcal{P}(\omega)/\text{fin}$.
Theorem (Parovicenko)

Assume the Continuum Hypothesis. Then for every zero-dimensional, locally compact, noncompact, Hausdorff space X, $X^* \cong \omega^*$.

Sketch.

Let $C(X)$ denote the Boolean algebra of clopen subsets of X, and $K(X)$ its ideal of compact-open sets. Then by Stone duality, it’s enough to prove that $C(X)/K(X) \cong \mathcal{P}(\omega)/\text{fin}$. These Boolean algebras are both countably saturated and have size $\mathfrak{c} = \aleph_1$.
Theorem (Parovicenko)

Assume the Continuum Hypothesis. Then for every zero-dimensional, locally compact, noncompact, Hausdorff space X, $X^* \cong \omega^*$.

Sketch.

Let $\mathcal{C}(X)$ denote the Boolean algebra of clopen subsets of X, and $\mathcal{K}(X)$ its ideal of compact-open sets. Then by Stone duality, it's enough to prove that $\mathcal{C}(X)/\mathcal{K}(X) \cong \mathcal{P}(\omega)/\text{fin}$. These Boolean algebras are both countably saturated and have size $c = \aleph_1$. A back-and-forth argument finishes the proof.
So under CH, Čech-Stone remainders are very *malleable*.
So under CH, Čech-Stone remainders are very *malleable*.

Theorem (Farah-McKenney)

Assume OCA and MA_{\aleph_1}. Let X and Y be zero-dimensional, locally compact Polish spaces, and suppose $\varphi : X^* \to Y^*$ is a homeomorphism. Then there are cocompact subsets of X and Y which are homeomorphic, and moreover φ is induced by such a homeomorphism.
So under CH, Čech-Stone remainders are very *malleable*.

Theorem (Farah-McKenney)

Assume OCA and MA$_{\aleph_1}$. Let X and Y be zero-dimensional, locally compact Polish spaces, and suppose $\varphi : X^* \to Y^*$ is a homeomorphism. Then there are cocompact subsets of X and Y which are homeomorphic, and moreover φ is induced by such a homeomorphism.

This says that under OCA and MA$_{\aleph_1}$, Čech-Stone remainders (in a certain class) are very *rigid*.
Notation: given a set V we write $[V]^2$ for the set of unordered pairs $\{v, w\} \ (v \neq w)$ of elements of V.
Notation: given a set V we write $[V]^2$ for the set of unordered pairs $\{v, w\} (v \neq w)$ of elements of V.

The *Open Coloring Axiom* states:
Notation: given a set V we write $[V]^2$ for the set of unordered pairs $\{v, w\}$ ($v \neq w$) of elements of V.

The *Open Coloring Axiom* states:
For every separable metric space V and every open $G \subseteq [V]^2$, (where $[V]^2$ is identified with $V \times V$ minus the diagonal), either
Notation: given a set V we write $[V]^2$ for the set of unordered pairs $\{v, w\}$ ($v \neq w$) of elements of V.

The *Open Coloring Axiom* states:
For every separable metric space V and every open $G \subseteq [V]^2$, (where $[V]^2$ is identified with $V \times V$ minus the diagonal), either

- there is an uncountable $A \subseteq V$ such that $[A]^2 \subseteq G$ (*G has an uncountable complete subgraph*), or
Notation: given a set V we write $[V]^2$ for the set of unordered pairs $\{v, w\}$ ($v \neq w$) of elements of V.

The **Open Coloring Axiom** states:
For every separable metric space V and every open $G \subseteq [V]^2$, (where $[V]^2$ is identified with $V \times V$ minus the diagonal), either

- there is an uncountable $A \subseteq V$ such that $[A]^2 \subseteq G$ (*G has an uncountable complete subgraph*), or
- there is a partition $V = \bigcup_{n=1}^{\infty} B_n$ such that for all n, $[B_n]^2 \cap G = \emptyset$. (*$G$ is countably chromatic.*)
Notation: given a set V we write $[V]^2$ for the set of unordered pairs $\{v, w\}$ ($v \neq w$) of elements of V.

The **Open Coloring Axiom** states: For every separable metric space V and every open $G \subseteq [V]^2$, (where $[V]^2$ is identified with $V \times V$ minus the diagonal), either

- there is an uncountable $A \subseteq V$ such that $[A]^2 \subseteq G$ (*G has an uncountable complete subgraph*), or
- there is a partition $V = \bigcup_{n=1}^{\infty} B_n$ such that for all n, $[B_n]^2 \cap G = \emptyset$. (*$G$ is countably chromatic.*)

Note: the set-theoretic strength of OCA is in the “for every separable metric V” part. For instance, OCA is true in ZFC for analytic $V \subseteq \mathbb{R}$ (by a Cantor-Bendixon style argument).
OCA and MA$_{\aleph_1}$ have been used to prove similar things before, most prominently
OCA and MA_{\aleph_1} have been used to prove similar things before, most prominently

Theorem (Veličković, 1993)

Assume OCA and MA_{\aleph_1}. Then every homeomorphism of ω^ is induced by a bijection $e : \omega \setminus F_1 \to \omega \setminus F_2$ where F_1, F_2 are finite.*
OCA and MA_{\aleph_1} have been used to prove similar things before, most prominently

Theorem (Veličković, 1993)

Assume OCA and MA_{\aleph_1}. Then every homeomorphism of ω^* is induced by a bijection $e : \omega \setminus F_1 \to \omega \setminus F_2$ where F_1, F_2 are finite.

Theorem (Farah, 1996)

(Same as our result but restricted to countable X and Y.)
OCA and MA$_{\aleph_1}$ have been used to prove similar things before, most prominently

Theorem (Veličković, 1993)

Assume OCA and MA$_{\aleph_1}$. Then every homeomorphism of ω^* is induced by a bijection $e : \omega \setminus F_1 \rightarrow \omega \setminus F_2$ where F_1, F_2 are finite.

Theorem (Farah, 1996)

(Same as our result but restricted to countable X and Y.)

Theorem (Farah, 2011)

Assume OCA. Then every automorphism of $B(\ell^2)/\mathcal{K}(\ell^2)$ is induced by a linear isometry between closed subspaces of ℓ^2 with finite codimension.
Assume OCA and MA$_{\aleph_1}$. Let X and Y be zero-dimensional, locally compact, noncompact Polish spaces, and suppose $\varphi : C(X)/K(X) \to C(Y)/K(Y)$ is an isomorphism. Then there are compact sets $K \subseteq X$ and $L \subseteq Y$, and a homeomorphism $e : Y \setminus L \to X \setminus K$, such that $\varphi([A]) = [e^{-1}(A)]$ for all $A \in C(X)$.

Proof. (Sketch, of a special case, using a big black box.) Let $X = \check{\bigcup}_{n=1}^{\infty} [T_n]$ where each T_n is a finitely-branching tree. Given $s \in T_n$ we write $[s]$ for the set of $x \in [T_n]$ extending s. Let P be the set of all partitions Q of X into sets of the form $[s]$.

Paul McKenney
Theorem

Assume OCA and MA_{\aleph_1}. Let X and Y be zero-dimensional, locally compact, noncompact Polish spaces, and suppose \(\varphi : C(X)/K(X) \to C(Y)/K(Y) \) is an isomorphism. Then there are compact sets \(K \subseteq X \) and \(L \subseteq Y \), and a homeomorphism \(e : Y \setminus L \to X \setminus K \), such that \(\varphi([A]) = [e^{-1}(A)] \) for all \(A \in C(X) \).

Proof.
Assume OCA and MA_{\aleph_1}. Let X and Y be zero-dimensional, locally compact, noncompact Polish spaces, and suppose \(\varphi: \mathcal{C}(X)/\mathcal{K}(X) \to \mathcal{C}(Y)/\mathcal{K}(Y) \) is an isomorphism. Then there are compact sets \(K \subseteq X \) and \(L \subseteq Y \), and a homeomorphism \(e: Y \setminus L \to X \setminus K \), such that \(\varphi([A]) = [e^{-1}(A)] \) for all \(A \in \mathcal{C}(X) \).

Proof. (Sketch,}
Theorem

Assume OCA and MA$_{<\omega_1}$. Let X and Y be zero-dimensional, locally compact, noncompact Polish spaces, and suppose $\varphi : \mathcal{C}(X)/\mathcal{K}(X) \to \mathcal{C}(Y)/\mathcal{K}(Y)$ is an isomorphism. Then there are compact sets $K \subseteq X$ and $L \subseteq Y$, and a homeomorphism $e : Y \setminus L \to X \setminus K$, such that $\varphi([A]) = [e^{-1}(A)]$ for all $A \in \mathcal{C}(X)$.

Proof. (Sketch, of a special case,
Assume OCA and MA_{\aleph_1}. Let X and Y be zero-dimensional, locally compact, noncompact Polish spaces, and suppose $
abla : C(X)/\mathcal{K}(X) \to C(Y)/\mathcal{K}(Y)$ is an isomorphism. Then there are compact sets $K \subseteq X$ and $L \subseteq Y$, and a homeomorphism $e : Y \setminus L \to X \setminus K$, such that $\nabla([A]) = [e^{-1}(A)]$ for all $A \in C(X)$.

Proof. (Sketch, of a special case, using a big black box.)
Theorem

Assume OCA and MA_{\aleph_1}. Let X and Y be zero-dimensional, locally compact, noncompact Polish spaces, and suppose $\varphi : \mathcal{C}(X)/\mathcal{K}(X) \rightarrow \mathcal{C}(Y)/\mathcal{K}(Y)$ is an isomorphism. Then there are compact sets $K \subseteq X$ and $L \subseteq Y$, and a homeomorphism $e : Y \setminus L \rightarrow X \setminus K$, such that $\varphi([A]) = [e^{-1}(A)]$ for all $A \in \mathcal{C}(X)$.

Proof. (Sketch, of a special case, using a big black box.)

Let $X = \bigcup_{n=1}^{\infty} [T_n]$ where each T_n is a finitely-branching tree.
Theorem

Assume OCA and MA\(_{\aleph_1}\). Let \(X\) and \(Y\) be zero-dimensional, locally compact, noncompact Polish spaces, and suppose \(\varphi : \mathcal{C}(X)/\mathcal{K}(X) \to \mathcal{C}(Y)/\mathcal{K}(Y)\) is an isomorphism. Then there are compact sets \(K \subseteq X\) and \(L \subseteq Y\), and a homeomorphism \(e : Y \setminus L \to X \setminus K\), such that \(\varphi([A]) = [e^{-1}(A)]\) for all \(A \in \mathcal{C}(X)\).

Proof. (Sketch, of a special case, using a big black box.)

Let \(X = \bigcup_{n=1}^{\infty} [T_n]\) where each \(T_n\) is a finitely-branching tree.

Given \(s \in T_n\) we write \([s]\) for the set of \(x \in [T_n]\) extending \(s\).
Theorem

Assume OCA and MA_{\aleph_1}. Let X and Y be zero-dimensional, locally compact, noncompact Polish spaces, and suppose \(\varphi : \mathcal{C}(X)/\mathcal{K}(X) \to \mathcal{C}(Y)/\mathcal{K}(Y) \) is an isomorphism. Then there are compact sets $K \subseteq X$ and $L \subseteq Y$, and a homeomorphism $e : Y \setminus L \to X \setminus K$, such that $\varphi([A]) = [e^{-1}(A)]$ for all $A \in \mathcal{C}(X)$.

Proof. (Sketch, of a special case, using a big black box.)

Let $X = \bigcup_{n=1}^{\infty} [T_n]$ where each T_n is a finitely-branching tree.

Given $s \in T_n$ we write $[s]$ for the set of $x \in [T_n]$ extending s.

Let \mathcal{P} be the set of all partitions Q of X into sets of the form $[s]$.
Given $Q \in \mathbb{P}$ there is a natural embedding

$$\sigma_Q : \mathcal{P}(Q)/\text{fin} \hookrightarrow \mathcal{C}(X)/\mathcal{K}(X)$$
Given $Q \in \mathbb{P}$ there is a natural embedding

$$\sigma_Q : \mathcal{P}(Q)/\text{fin} \hookrightarrow \mathcal{C}(X)/\mathcal{K}(X)$$

\mathbb{P} is ordered by *eventual refinement*:

$$Q_1 \prec^* Q_2 \iff \forall^\infty U \in Q_1 \exists V \in Q_2 \ V \supseteq U$$
Given $Q \in \mathcal{P}$ there is a natural embedding

$$\sigma_Q : \mathcal{P}(Q) / \text{fin} \hookrightarrow \mathcal{C}(X) / \mathcal{K}(X)$$

\mathcal{P} is ordered by *eventual refinement*:

$$Q_1 \prec^* Q_2 \iff \forall^\infty U \in Q_1 \exists V \in Q_2 \; V \supseteq U$$

If $Q_1 \prec^* Q_2$ then there is a an embedding

$$\tau_{Q_2 Q_1} : \mathcal{P}(Q_2) / \text{fin} \rightarrow \mathcal{P}(Q_1) / \text{fin}$$

such that $\sigma_{Q_2} = \sigma_{Q_1} \circ \tau_{Q_2 Q_1}$.
Given $Q \in \mathcal{P}$ there is a natural embedding

$$\sigma_Q : \mathcal{P}(Q)/\text{fin} \hookrightarrow \mathcal{C}(X)/\mathcal{K}(X)$$

\mathcal{P} is ordered by eventual refinement:

$$Q_1 \prec^* Q_2 \iff \forall U \in Q_1 \exists V \in Q_2 \forall V \supseteq U$$

If $Q_1 \prec^* Q_2$ then there is an embedding

$$\tau_{Q_2Q_1} : \mathcal{P}(Q_2)/\text{fin} \to \mathcal{P}(Q_1)/\text{fin}$$

such that $\sigma_{Q_2} = \sigma_{Q_1} \circ \tau_{Q_2Q_1}$.

Lemma

$\mathcal{C}(X)/\mathcal{K}(X)$ is the direct limit of the algebras $\mathcal{P}(Q)/\text{fin}$ along the connecting maps $\tau_{Q_2Q_1}$.
For each $Q \in \mathbb{P}$, define $\varphi_Q = \varphi \circ \sigma_Q$.

$$\varphi_Q : \mathcal{P}(Q)/\text{fin} \hookrightarrow C(Y)/\mathcal{K}(Y)$$
For each $Q \in \mathbb{P}$, define $\varphi_Q = \varphi \circ \sigma_Q$.

$$\varphi_Q : \mathcal{P}(Q)/\text{fin} \rightarrow \mathcal{C}(Y)/\mathcal{K}(Y)$$

Theorem (Veličković, essentially)

Assume OCA and MA_{\aleph_1}. Then every embedding $\psi : \mathcal{P}(\omega)/\text{fin} \rightarrow \mathcal{C}(Y)/\mathcal{K}(Y)$ is of the form

$$\psi([A]) = [e^{-1}(A)]$$

for some continuous function $e : Y \rightarrow \omega$.
For each $Q \in \mathbb{P}$, define $\varphi_Q = \varphi \circ \sigma_Q$.

$$\varphi_Q : \mathcal{P}(Q)/\text{fin} \rightarrow \mathcal{C}(Y)/\mathcal{K}(Y)$$

Theorem (Veličković, essentially)

Assume OCA and MA\aleph_1. Then every embedding $\psi : \mathcal{P}(\omega)/\text{fin} \rightarrow \mathcal{C}(Y)/\mathcal{K}(Y)$ is of the form

$$\psi([A]) = [e^{-1}(A)]$$

for some continuous function $e : Y \rightarrow \omega$.

So we get continuous functions $e_Q : Y \rightarrow Q$ inducing the embeddings φ_Q.
The fact that the e_Q's induce the same isomorphism on different subalgebras implies that they are \textit{coherent} in the following way.
The fact that the e_Q’s induce the same isomorphism on different subalgebras implies that they are *coherent* in the following way.

Given Q_1, Q_2 define $Q_1 \vee Q_2$ to be the finest partition which is coarser than both Q_1 and Q_2.
The fact that the e_Q’s induce the same isomorphism on different subalgebras implies that they are *coherent* in the following way.

Given Q_1, Q_2 define $Q_1 \vee Q_2$ to be the finest partition which is coarser than both Q_1 and Q_2.

Define $s_{Q_1, Q_1 \vee Q_2} : Q_1 \to Q_1 \vee Q_2$ by defining $s_{Q_1, Q_1 \vee Q_2}(U)$ to be the unique element V of $Q_1 \vee Q_2$ such that $V \supseteq U$.
The fact that the e_Q's induce the same isomorphism on different subalgebras implies that they are *coherent* in the following way.

Given Q_1, Q_2 define $Q_1 \vee Q_2$ to be the finest partition which is coarser than both Q_1 and Q_2.

Define $s_{Q_1, Q_1 \vee Q_2} : Q_1 \to Q_1 \vee Q_2$ by defining $s_{Q_1, Q_1 \vee Q_2}(U)$ to be the unique element V of $Q_1 \vee Q_2$ such that $V \supseteq U$.

Then for any $Q_1, Q_2 \in \mathcal{P}$, the set

$$\Delta(e_{Q_1}, e_{Q_2}) = \{ y \in Y \mid s_{Q_1, Q_1 \vee Q_2}(e_{Q_1}(y)) \neq s_{Q_2, Q_1 \vee Q_2}(e_{Q_2}(y)) \}$$

is compact.
The fact that the e_Q's induce the same isomorphism on different subalgebras implies that they are \textit{coherent} in the following way.

Given Q_1, Q_2 define $Q_1 \lor Q_2$ to be the finest partition which is coarser than both Q_1 and Q_2.

Define $s_{Q_1, Q_1 \lor Q_2} : Q_1 \to Q_1 \lor Q_2$ by defining $s_{Q_1, Q_1 \lor Q_2}(U)$ to be the unique element V of $Q_1 \lor Q_2$ such that $V \supseteq U$.

Then for any $Q_1, Q_2 \in \mathbb{P}$, the set

$$\Delta(e_{Q_1}, e_{Q_2}) = \{ y \in Y \mid s_{Q_1, Q_1 \lor Q_2}(e_{Q_1}(y)) \neq s_{Q_2, Q_1 \lor Q_2}(e_{Q_2}(y)) \}$$

is compact.

(We will say that e_{Q_1} and e_{Q_2} \textit{cohere exactly} if $\Delta(e_{Q_1}, e_{Q_2}) = \emptyset$.)
Define $G \subseteq [\mathbb{P}]^2$ to be the set of $\{Q_1, Q_2\}$ such that e_{Q_1} and e_{Q_2} do \textit{not} cohere exactly.
Define $G \subseteq [\mathbb{P}]^2$ to be the set of $\{Q_1, Q_2\}$ such that e_{Q_1} and e_{Q_2} do \textit{not} cohere exactly.

Then G is open when \mathbb{P} is given a certain separable metric topology.
Define $G \subseteq [\mathbb{P}]^2$ to be the set of $\{Q_1, Q_2\}$ such that e_{Q_1} and e_{Q_2} do not cohere exactly.

Then G is open when \mathbb{P} is given a certain separable metric topology.

Recall: OCA says that either
Define $G \subseteq [\mathbb{P}]^2$ to be the set of \{Q_1, Q_2\} such that e_{Q_1} and e_{Q_2} do not cohere exactly.

Then G is open when \mathbb{P} is given a certain separable metric topology.

Recall: OCA says that either

- there is an uncountable $A \subseteq \mathbb{P}$ such that $[A]^2 \subseteq G$, or
Define $G \subseteq \mathcal{P}^2$ to be the set of $\{Q_1, Q_2\}$ such that e_{Q_1} and e_{Q_2} do not cohere exactly.

Then G is open when \mathcal{P} is given a certain separable metric topology.

Recall: OCA says that either
- there is an uncountable $A \subseteq \mathcal{P}$ such that $[A]^2 \subseteq G$, or
- there is a partition $\mathcal{P} = \bigcup_n B_n$ such that for each n, $[B_n]^2 \cap G = \emptyset$.
Assume MA_{\aleph_1}. Then there is no uncountable $A \subseteq \mathbb{P}$ such that $[A]^2 \subseteq G$.

Lemma

Assume MA_{\aleph_1}. Then there is no uncountable $A \subseteq \mathbb{P}$ such that $[A]^2 \subseteq G$.

Sketch.

WLOG $|A| = \aleph_1$. MA_{\aleph_1} implies that there is some $Q \in \mathbb{P}$ which is \preceq^* every $Q' \in A$. Then using the coherence of e_Q with all of the $e_{Q'}$'s, along with a pigeonhole argument, we can find $Q_1, Q_2 \in A$ such that e_{Q_1} and e_{Q_2} cohere exactly.
Lemma

Assume MA_{\aleph_1}. Then there is no uncountable $A \subseteq \mathbb{P}$ such that $[A]^2 \subseteq G$.

Sketch.

WLOG $|A| = \aleph_1$. MA_{\aleph_1} implies that there is some $Q \in \mathbb{P}$ which is \prec^* every $Q' \in A$. Then using the coherence of e_Q with all of the $e_{Q'}$'s, along with a pigeonhole argument, we can find $Q_1, Q_2 \in A$ such that e_{Q_1} and e_{Q_2} cohere exactly.
Assume MA_{\aleph_1}. Then there is no uncountable $A \subseteq \mathbb{P}$ such that $[A]^2 \subseteq G$.

Sketch.

WLOG $|A| = \aleph_1$. MA_{\aleph_1} implies that there is some $Q \in \mathbb{P}$ which is \preceq^* every $Q' \in A$. Then using the coherence of e_Q with all of the $e_{Q'}$'s, along with a pigeonhole argument, we can find $Q_1, Q_2 \in A$ such that e_{Q_1} and e_{Q_2} cohere exactly.

Lemma

If $\mathbb{P} = \bigcup_n B_n$ then one of the B_n's is cofinal in (\mathbb{P}, \preceq^*).

Paul McKenney

Homeomorphisms of Čech-Stone remainders: the zero-dimensional...
Lemma

Assume MA_{\aleph_1}. Then there is no uncountable $A \subseteq P$ such that $[A]^2 \subseteq G$.

Sketch.

WLOG $|A| = \aleph_1$. MA_{\aleph_1} implies that there is some $Q \in P$ which is \prec^* every $Q' \in A$. Then using the coherence of e_Q with all of the $e_{Q'}$’s, along with a pigeonhole argument, we can find $Q_1, Q_2 \in A$ such that e_{Q_1} and e_{Q_2} cohere exactly.

Lemma

If $P = \bigcup_n B_n$ then one of the B_n’s is cofinal in (P, \prec^*).

Sketch.

(P, \prec^*) is countably-directed.
By OCA, then, there is a set $B \subseteq \mathbb{P}$ which is cofinal with respect to \succ^* and for which the functions $\{e_Q \mid Q \in B\}$ cohere exactly.
By OCA, then, there is a set $B \subseteq \mathbb{P}$ which is cofinal with respect to \succ^* and for which the functions $\{e_Q \mid Q \in B\}$ cohere exactly.

Define a function e by

$$e(y) \in \bigcap_{Q \in B} e_Q(y)$$
By OCA, then, there is a set $B \subseteq \mathbb{P}$ which is cofinal with respect to \succ^* and for which the functions $\{e_Q \mid Q \in B\}$ cohere exactly.

Define a function e by

$$e(y) \in \bigcap_{Q \in B} e_Q(y)$$

Lemma

e is a homeomorphism from a cocompact subset of Y to a cocompact subset of X, and for every $A \in \mathcal{C}(X)$,

$$\varphi([A]) = [e^{-1}(A)]$$
By OCA, then, there is a set $B \subseteq \mathbb{P}$ which is cofinal with respect to \succ^* and for which the functions $\{e_Q \mid Q \in B\}$ cohere exactly.

Define a function e by

$$e(y) \in \bigcap_{Q \in B} e_Q(y)$$

Lemma

e is a homeomorphism from a cocompact subset of Y to a cocompact subset of X, and for every $A \in C(X)$,

$$\varphi([A]) = [e^{-1}(A)]$$
Theorem (Gelfand Duality)

Compact Hausdorff spaces are dual to unital, commutative C-algebras, via*

\[X \mapsto C(X, \mathbb{C}) \]
Theorem (Gelfand Duality)

Compact Hausdorff spaces are dual to unital, commutative C*-algebras, via

\[X \mapsto C(X, \mathbb{C}) \]

A C*-algebra is a complex Banach space \(A \) with a product \(\cdot \) and an involution \(* \), satisfying some axioms relating those operations to each other.
Theorem (Gelfand Duality)

Compact Hausdorff spaces are dual to unital, commutative \(C^* \)-algebras, via

\[
X \mapsto C(X, \mathbb{C})
\]

A \(C^* \)-algebra is a complex Banach space \(A \) with a product \(\cdot \) and an involution \(* \), satisfying some axioms relating those operations to each other.

Theorem (Farah)

Assume OCA. Then every automorphism of \(B(\ell^2)/\mathcal{K}(\ell^2) \) is induced by a linear isometry between closed subspaces of \(\ell^2 \) with finite codimension.
Theorem (Gelfand Duality)

Compact Hausdorff spaces are dual to unital, commutative C*-algebras, via

\[X \mapsto C(X, \mathbb{C}) \]

A C*-algebra is a complex Banach space \(A \) with a product \(\cdot \) and an involution \(* \), satisfying some axioms relating those operations to each other.

Theorem (Farah)

Assume OCA. Then every automorphism of \(B(\ell^2)/\mathcal{K}(\ell^2) \) is induced by a linear isometry between closed subspaces of \(\ell^2 \) with finite codimension.

\(B(\ell^2)/\mathcal{K}(\ell^2) \) and \(C(X^*) \) are both C*-algebras of a special kind called corona algebras.
Theorem (M.-Vignati)

Assume OCA_∞ and MA_{\aleph_1}. Then every isomorphism between two corona algebras (with certain approximation properties) is definable.
Theorem (M.-Vignati)

Assume OCA_∞ and MA_{\aleph_1}. Then every isomorphism between two corona algebras (with certain approximation properties) is definable.

Corollary

Assume OCA_∞ and MA_{\aleph_1}. Let $X = \bigcup K_n$ and $Y = \bigcup L_n$ where K_n and L_n are compact Hausdorff spaces. Then every homeomorphism $X^* \simeq Y^*$ is induced by a sequence of homeomorphisms $K_n \simeq L_n$ (after possibly permuting the indices.)
Thank you!