Supernilpotence and Higher Dimensional Congruences

Andrew Moorhead

Vanderbilt University

August 5, 2018
Overview of Talk

1. Commutator Theory, Nilpotence, and Supernilpotence
Overview of Talk

1. Commutator Theory, Nilpotence, and Supernilpotence
2. Higher Dimensional Congruence Relations
Overview of Talk

1. Commutator Theory, Nilpotence, and Supernilpotence
2. Higher Dimensional Congruence Relations
3. A Stronger Term Condition and Commutator
Overview of Talk

1. Commutator Theory, Nilpotence, and Supernilpotence
2. Higher Dimensional Congruence Relations
3. A Stronger Term Condition and Commutator
4. Supernilpotent Taylor Algebras
Overview of Talk

1. Commutator Theory, Nilpotence, and Supernilpotence
2. Higher Dimensional Congruence Relations
3. A Stronger Term Condition and Commutator
4. Supernilpotent Taylor Algebras
5. Supernilpotence Need Not Imply Nilpotence
Commutator Theory

The classical commutator for a universal algebra \mathbb{A} is a binary operation

$$[\cdot, \cdot] : \text{Con}(\mathbb{A})^2 \to \text{Con}(\mathbb{A})$$

that allows one to define abelianness and generalizations of abelianness such as solvability and nilpotence.
Commutator Theory

- The classical commutator for a universal algebra \mathbb{A} is a binary operation

\[
[\cdot, \cdot] : \text{Con}(\mathbb{A})^2 \to \text{Con}(\mathbb{A})
\]

that allows one to define abelianness and generalizations of abelianness such as solvability and nilpotence.

- For example, an algebra \mathbb{A} is said to be abelian if

\[
[1, 1] = 0.
\]
Commutator Theory

- The classical commutator for a universal algebra \mathbb{A} is a binary operation
 \[[\cdot, \cdot] : \text{Con}(\mathbb{A})^2 \to \text{Con}(\mathbb{A}) \]
 that allows one to define abelianness and generalizations of abelianness such as solvability and nilpotence.

- For example, an algebra \mathbb{A} is said to be **abelian** if
 \[[1, 1] = 0. \]

- The higher commutator is a higher arity operation that generalizes the binary commutator, e.g.
 \[[\cdot, \ldots, \cdot] : \text{Con}(\mathbb{A})^n \to \text{Con}(\mathbb{A}) \]
Nilpotence and Supernilpotence

Definition

Let A be an algebra and let $\theta \in \text{Con}(A)$. Set

$\theta_0 = \theta$ and

$\theta_{i+1} = [\theta_i, \theta]$ and ($\theta_{i+1} = ([\theta_i, \theta]^TC)$.

These produce two descending chains of congruences, called the derived and lower central series, respectively.

1. If $\theta_n = 0$ then θ is said to be n-step solvable.
2. If ($\theta_n = 0$, then θ is said to be n-step nilpotent.
3. If θ is such that $\theta, \ldots, \theta \in \text{Con}(A)$, then θ is said to be n-step supernilpotent.
Nilpotence and Supernilpotence

Definition
Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $[\theta]_0 = (\theta)^0 := \theta$ and

$$[\theta]_{i+1} := [[\theta], [\theta]_i] \quad \text{and} \quad (\theta)^{i+1} = [(\theta)_i, \theta]_{TC}.$$

These produce two descending chains of congruences, called the derived and lower central series, respectively.

1. If $[\theta]_n = 0$ then θ is said to be n-step solvable.
2. If $(\theta)^n = 0$, then θ is said to be n-step nilpotent.
3. If θ is such that $(\theta), \ldots, \theta$ vanishes in length $n + 1$, then θ is said to be n-step supernilpotent.
Nilpotence and Supernilpotence

Definition

Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $[\theta]_0 = (\theta)^0 := \theta$ and

$$[\theta]_{i+1} := [[\theta]_i, [\theta]_i] \quad \text{and} \quad (\theta)^{i+1} = [(\theta)_i, \theta]_{TC}.$$

These produce two descending chains of congruences, called the derived and lower central series, respectively.

1. If $[\theta]_n = 0$ then θ is said to be n-step solvable.
Nilpotence and Supernilpotence

Definition
Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $[\theta]_0 = (\theta)^0 := \theta$ and

$$[\theta]_{i+1} := [[\theta]_i, [\theta]_i]$$

and

$$([\theta]_{i+1} = [(\theta)_i, \theta]_{TC}.$$ These produce two descending chains of congruences, called the derived and lower central series, respectively.

1. If $[\theta]_n = 0$ then θ is said to be n-step solvable.
2. If $(\theta)^n = 0$, then θ is said to be n-step nilpotent.
Nilpotence and Supernilpotence

Definition

Let \mathbb{A} be an algebra and let $\theta \in \text{Con}(\mathbb{A})$. Set $[\theta]_0 = (\theta)^0 := \theta$ and

$$[\theta]_{i+1} := [[\theta], [\theta]_i] \quad \text{and} \quad (\theta)^{i+1} = [(\theta)_i, \theta]_{TC}. $$

These produce two descending chains of congruences, called the **derived** and **lower central series**, respectively.

1. If $[\theta]_n = 0$ then θ is said to be **n-step solvable**.
2. If $(\theta)^n = 0$, then θ is said to be **n-step nilpotent**.
3. If θ is such that $[\theta, \ldots, \theta] = 0$, then θ is said to be **n-step $n+1$-step supernilpotent**.
Nilpotence and Supernilpotence

- Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.
Nilpotence and Supernilpotence

- Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.
- Supernilpotence has received attention lately, partly because of theorems of the type ‘nice property of finite nilpotent groups holds for finite supernilpotent algebras of finite type,’ for example:

 1. A finite Mal’cev algebra of finite type is supernilpotent if and only if it is the product of prime power order nilpotent algebras. (Freese & McKenzie, Kearnes, Aichinger & Mudrinski)
 2. There is a polynomial time algorithm to solve the equation satisfiability problem for a finite supernilpotent Mal’cev algebra of finite type. (Kompatscher)
Nilpotence and Supernilpotence

- Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.
- Supernilpotence has received attention lately, partly because of theorems of the type ‘nice property of finite nilpotent groups holds for finite supernilpotent algebras of finite type,’ for example:
 1. A finite Mal’cev algebra of finite type is supernilpotent if and only if it is the product of prime power order nilpotent algebras. (Freese & McKenzie, Kearnes, Aichinger & Mudrinski)
Nilpotence and Supernilpotence

Supernilpotence and nilpotence are the same for groups and rings but in general they are different, even for expanded groups.

Supernilpotence has received attention lately, partly because of theorems of the type ‘nice property of finite nilpotent groups holds for finite supernilpotent algebras of finite type,’ for example:

1. A finite Mal’cev algebra of finite type is supernilpotent if and only it is the product of prime power order nilpotent algebras. (Freese & McKenzie, Kearnes, Aichinger & Mudrinski)
2. There is a polynomial time algorithm to solve the equation satisfiability problem for a finite supernilpotent Mal’cev algebra of finite type. (Kompatscher)
Nilpotence and Supernilpotence

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
Nilpotence and Supernilpotence

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
Nilpotence and Supernilpotence

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal’cev algebra is nilpotent.
Nilpotence and Supernilpotence

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal’cev algebra is nilpotent.
- Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.
- It follows from results of Wires that any supernilpotent algebra generating a modular variety is nilpotent.
- We can show any supernilpotent Taylor algebra is nilpotent. (A Taylor algebra is an algebra that satisfies some nontrivial idempotent Mal’cev condition.)
- Moore and M. have constructed a supernilpotent algebra that is not solvable and hence not nilpotent. Note, this algebra is necessarily infinite and not Taylor.
Nilpotence and Supernilpotence

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal’cev algebra is nilpotent.
- Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.
- It follows from results of Wires that any supernilpotent algebra generating a modular variety is nilpotent.
Nilpotence and Supernilpotence

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal’cev algebra is nilpotent.
- Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.
- It follows from results of Wires that any supernilpotent algebra generating a modular variety is nilpotent.
- We can show any supernilpotent Taylor algebra is nilpotent. (A Taylor algebra is an algebra that satisfies some nontrivial idempotent Mal’cev condition.)
Nilpotence and Supernilpotence

- The commutator is monotonic in each argument, so nilpotence is stronger than solvability.
- The exact relationship between supernilpotence and nilpotence has been unclear.
- Aichinger and Mudrinski have shown any supernilpotent Mal’cev algebra is nilpotent.
- Kearnes and Szendrei have announced that any finite supernilpotent algebra is nilpotent.
- It follows from results of Wires that any supernilpotent algebra generating a modular variety is nilpotent.
- We can show any supernilpotent Taylor algebra is nilpotent. (A Taylor algebra is an algebra that satisfies some nontrivial idempotent Mal’cev condition.)
- Moore and M. have constructed a supernilpotent algebra that is not solvable and hence not nilpotent. Note, this algebra is necessarily infinite and not Taylor.
Commutator Definition

- The modular commutator can be equivalently defined with either
Commutator Definition

- The modular commutator can be equivalently defined with either
 1. the term condition, or
Commutator Definition

- The modular commutator can be equivalently defined with either
 1. the term condition, or
 2. properties of a relation, usually called Δ.

Definition (Term Condition)

Let A be an algebra and take $\alpha, \beta, \delta \in \text{Con}(A)$. We say that α centralizes β modulo δ when the following condition is met:

For all $t \in \text{Pol}(A)$ and $a_0 \equiv \alpha b_0$ and $a_1 \equiv \beta b_1$ with $|a_0| + |a_1| = \sigma(t)$,

$\Rightarrow t(b_0, a_0) \equiv \delta t(b_0, b_1)$

We write $C_{TC}(\alpha, \beta; \delta)$ whenever this is true.

The term condition may be described as a condition that is quantified over a certain invariant relation of A which is called the algebra of (α, β)-matrices and is denoted $M(\alpha, \beta)$.
Commutator Definition

- The modular commutator can be equivalently defined with either
 1. the term condition, or
 2. properties of a relation, usually called Δ.

Definition (Term Condition)

Let \mathbb{A} be an algebra and take $\alpha, \beta, \delta \in \text{Con}(\mathbb{A})$. We say that α centralizes β modulo δ when the following condition is met:

\[
\forall t \in \text{Pol}(\mathbb{A}) \text{ and } a_0 \equiv \alpha b_0 \text{ and } a_1 \equiv \beta b_1 \text{ with } |a_0| + |a_1| = \sigma(t), \quad \Rightarrow \quad t(b_0, a_0) \equiv \delta t(b_0, b_1)
\]

We write $C_{TC}(\alpha, \beta; \delta)$ whenever this is true.

The term condition may be described as a condition that is quantified over a certain invariant relation of \mathbb{A} which is called the algebra of (α, β)-matrices and is denoted $M(\alpha, \beta)$.
Commutator Definition

- The modular commutator can be equivalently defined with either
 1. the term condition, or
 2. properties of a relation, usually called \(\Delta \).

Definition (Term Condition)

Let \(\mathbb{A} \) be an algebra and take \(\alpha, \beta, \delta \in \text{Con}(\mathbb{A}) \). We say that \(\alpha \) centralizes \(\beta \) modulo \(\delta \) when the following condition is met:

- For all \(t \in \text{Pol}(\mathbb{A}) \) and \(a_0 \equiv_\alpha b_0 \) and \(a_1 \equiv_\beta b_1 \) with \(|a_0| + |a_1| = \sigma(t) \),

\[
\left(t(a_0, a_1) \equiv_\delta t(a_0, b_1) \implies t(b_0, a_0) \equiv_\delta t(b_0, b_1) \right)
\]

We write \(C_{TC}(\alpha, \beta; \delta) \) whenever this is true.

The term condition may be described as a condition that is quantified over a certain invariant relation of \(\mathbb{A} \) which is called the algebra of \((\alpha, \beta) \)-matrices and is denoted \(M(\alpha, \beta) \).
Commutator Definition

- The modular commutator can be equivalently defined with either
 1. the term condition, or
 2. properties of a relation, usually called \(\Delta \).

Definition (Term Condition)

Let \(A \) be an algebra and take \(\alpha, \beta, \delta \in \text{Con}(A) \). We say that \(\alpha \) centralizes \(\beta \) modulo \(\delta \) when the following condition is met:

- For all \(t \in \text{Pol}(A) \) and \(a_0 \equiv_\alpha b_0 \) and \(a_1 \equiv_\beta b_1 \) with \(|a_0| + |a_1| = \sigma(t) \),

\[
\left(t(a_0, a_1) \equiv_\delta t(a_0, b_1) \implies t(b_0, a_0) \equiv_\delta t(b_0, b_1) \right)
\]

We write \(C_{TC}(\alpha, \beta; \delta) \) whenever this is true.
Commutator Definition

- The modular commutator can be equivalently defined with either

 1. the term condition, or
 2. properties of a relation, usually called Δ.

Definition (Term Condition)

Let A be an algebra and take $\alpha, \beta, \delta \in \text{Con}(A)$. We say that α centralizes β modulo δ when the following condition is met:

- For all $t \in \text{Pol}(A)$ and $a_0 \equiv_\alpha b_0$ and $a_1 \equiv_\beta b_1$ with $|a_0| + |a_1| = \sigma(t)$,

 $$\left(t(a_0, a_1) \equiv_\delta t(a_0, b_1) \implies t(b_0, a_0) \equiv_\delta t(b_0, b_1) \right)$$

We write $C_{TC}(\alpha, \beta; \delta)$ whenever this is true.

- The term condition may be described as a condition that is quantified over a certain invariant relation of A which is called the algebra of (α, β)-matrices and is denoted $M(\alpha, \beta)$.
Matrices

- A square is the graph \(\langle 2^2; E \rangle \), where two functions \(f, g \in 2^2 \) are connected by an edge if and only if their outputs differ in exactly one argument.
Matrices

- A square is the graph $\langle 2^2; E \rangle$, where two functions $f, g \in 2^2$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 2-dimensional if $R \subseteq A^{2^2}$ (R is a set of squares whose vertices are labeled by elements of A.)
Matrices

- A square is the graph $\langle 2^2; E \rangle$, where two functions $f, g \in 2^2$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 2-dimensional if $R \subseteq A^{22}$ (R is a set of squares whose vertices are labeled by elements of A.)

- $M(\alpha, \beta)$ is the subalgebra of A^{22} with generators

$$\left\{ \begin{bmatrix} x & y \\ x & y \end{bmatrix} : x \equiv_\alpha y \right\} \cup \left\{ \begin{bmatrix} y & y \\ x & x \end{bmatrix} : x \equiv_\beta y \right\}$$
Matrices

For $\delta \in \text{Con}(A)$ we have that α centralizes β modulo δ if the implication

\[
\begin{pmatrix}
c \\
\delta \\
a
\end{pmatrix}
\rightarrow
\begin{pmatrix}
c \\
\delta \\
a
\end{pmatrix}
\]

holds for all (α, β)-matrices. This condition is abbreviated $C_{TC}(\alpha, \beta; \delta)$.
Matrices

Similarly, we have that β centralizes α modulo δ if the implication

\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\rightarrow
\begin{array}{c}
\text{c} \\
\text{d}
\end{array}
\delta
\]

holds for all (α, β)-matrices. This condition is abbreviated $C_{\mathcal{T}C}(\beta, \alpha; \delta)$.
The binary commutator is defined to be

$$[\alpha, \beta]_{T_C} = \bigwedge \{\delta : C(\alpha, \beta; \delta)\}$$
Matrices

- The notions of matrices and centrality for three congruences are defined similarly.
Matrices

- The notions of matrices and centrality for three congruences are defined similarly.
- A cube is the graph $\langle 2^3; E \rangle$, where two functions $f, g \in 2^3$ are connected by an edge if and only if their outputs differ in exactly one argument.
Matrices

- The notions of matrices and centrality for three congruences are defined similarly.

- A cube is the graph $\langle 2^3; E \rangle$, where two functions $f, g \in 2^3$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is 3-dimensional if $R \subseteq A^{3^2}$ (R is a set of cubes whose vertices are labeled by elements of A.)
The notions of matrices and centrality for three congruences are defined similarly.

A cube is the graph \(\langle 2^3; E \rangle \), where two functions \(f, g \in 2^3 \) are connected by an edge if and only if their outputs differ in exactly one argument.

We say that a relation \(R \) on a set \(A \) is 3-dimensional if \(R \subseteq A^{3^2} \) (\(R \) is a set of cubes whose vertices are labeled by elements of \(A \)).
For congruences $\theta_0, \theta_1, \theta_2 \in \text{Con}(\mathbb{A})$, set $M(\theta_0, \theta_1, \theta_2) \leq \mathbb{A}^{2^3}$ to be the subalgebra generated by the following labeled cubes:

$M(\theta_0, \theta_1, \theta_2)$ is called the algebra of $(\theta_0, \theta_1, \theta_2)$-matrices.
For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 **centralize** θ_2 **modulo** δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$-matrices:
For $\delta \in \text{Con}(A)$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$-matrices:
For $\delta \in \text{Con}(A)$, we say that θ_0, θ_1 centralize θ_2 modulo δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$-matrices:
For $\delta \in \text{Con}(A)$, we say that θ_0, θ_1 **centralize** θ_2 **modulo** δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$-matrices:

\[
\begin{array}{ccc}
\theta_0 & \theta_1 & \theta_2 \\
\delta & & \\
a & b & c \\
& d & e \\
& & f \\
g & h &
\end{array}
\]
Centrality

For $\delta \in \text{Con}(\mathbb{A})$, we say that θ_0, θ_1 **centralize** θ_2 **modulo** δ if the following implication holds for all $(\theta_0, \theta_1, \theta_2)$-matrices:

This condition is abbreviated $C_{TC}(\theta_0, \theta_1, \theta_2; \delta)$.
Here is a picture of $C_{TC}(\theta_1, \theta_2, \theta_0; \delta)$:
Matrices

For congruences $\theta_0, \theta_1, \theta_2$ we set

$$[\theta_0, \theta_1, \theta_2]_{TC} = \bigwedge \{\delta : C_{TC}(\theta_0, \theta_1, \theta_2; \delta)\}$$
For congruences $\theta_0, \theta_1, \theta_2$ we set

$$[\theta_0, \theta_1, \theta_2]_{TC} = \bigwedge \{\delta : C_{TC}(\theta_0, \theta_1, \theta_2; \delta)\}$$

Higher centrality and the commutator for arity ≥ 4 are similarly defined.
An n-dimensional hypercube is the graph $\mathbb{H}_n = \langle 2^n; E \rangle$, where two functions $f, g \in 2^n$ are connected by an edge if and only if their outputs differ in exactly one argument.
An n-dimensional hypercube is the graph $\mathbb{H}_n = \langle 2^n; E \rangle$, where two functions $f, g \in 2^n$ are connected by an edge if and only if their outputs differ in exactly one argument.

We say that a relation R on a set A is n-dimensional if $R \subseteq A^{2^n}$.
Matrices

- An n-dimensional hypercube is the graph $\mathbb{H}_n = \langle 2^n; E \rangle$, where two functions $f, g \in 2^n$ are connected by an edge if and only if their outputs differ in exactly one argument.

- We say that a relation R on a set A is n-dimensional if $R \subseteq A^{2^n}$.

- **Observation:** The term condition definition of centrality involving n-many congruences $\theta_0, \ldots, \theta_{n-1}$ is a condition that is quantified over $(\theta_0, \ldots, \theta_{n-1})$-matrices, which are certain n-dimensional invariant relations

\[M(\theta_0, \ldots, \theta_{n-1}) \leq A^{2^n} \]

that have generators of the form

\[f \in 2^n \text{ such that } f(i) = 0 \]

\[f \in 2^n \text{ such that } f(i) = 1 \]
Consider the n-dimensional hypercube $\mathbb{H}_n = \langle 2^n; E \rangle$. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional hyperfaces that are ‘perpendicular’ to i:
Consider the n-dimensional hypercube $\mathbb{H}_n = \langle 2^n; E \rangle$. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional hyperfaces that are ‘perpendicular’ to i:

1. $(\mathbb{H}_n)_i^0 = \langle \{ f \in 2^n : f(i) = 0 \}; E \rangle$ and
Consider the n-dimensional hypercube $\mathbb{H}_n = \langle 2^n; E \rangle$. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional hyperfaces that are ‘perpendicular’ to i:

1. $(\mathbb{H}_n)_i^0 = \langle \{ f \in 2^n : f(i) = 0 \}; E \rangle$ and
2. $(\mathbb{H}_n)_i^1 = \langle \{ f \in 2^n : f(i) = 1 \}; E \rangle$.
Consider the n-dimensional hypercube $\mathbb{H}_n = \langle 2^n; E \rangle$. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional hyperfaces that are ‘perpendicular’ to i:

1. $(\mathbb{H}_n)_i^0 = \langle \{ f \in 2^n : f(i) = 0 \}; E \rangle$ and

2. $(\mathbb{H}_n)_i^1 = \langle \{ f \in 2^n : f(i) = 1 \}; E \rangle$.
Consider the n-dimensional hypercube $\mathbb{H}_n = \langle 2^n; E \rangle$. For any coordinate $i \in n$, there are two $(n-1)$-dimensional hyperfaces that are ‘perpendicular’ to i:

1. $(\mathbb{H}_n)_i^0 = \langle \{ f \in 2^n : f(i) = 0 \}; E \rangle$ and
2. $(\mathbb{H}_n)_i^1 = \langle \{ f \in 2^n : f(i) = 1 \}; E \rangle$.

$(\mathbb{H}_n)_3^0$ and $(\mathbb{H}_n)_3^1$
Consider the n-dimensional hypercube $\mathbb{H}_n = \langle 2^n; E \rangle$. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional hyperfaces that are ‘perpendicular’ to i:

1. $(\mathbb{H}_n)_0^i = \langle \{ f \in 2^n : f(i) = 0 \} ; E \rangle$ and
2. $(\mathbb{H}_n)_1^i = \langle \{ f \in 2^n : f(i) = 1 \} ; E \rangle$.
Take \(h \in A^{2^n} \). We consider \(h \) as a vertex labeled \(n \)-dimensional hypercube. For any coordinate \(i \in n \), there are two \((n - 1)\)-dimensional vertex labeled hyperfaces that are perpendicular to \(i \), which we denote
Take $h \in A^{2^n}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h^0_i and
Take $h \in A^{2^n}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_i^0 and
2. h_i^1.
Take $h \in A^{2^n}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_i^0
2. h_i^1.
Take $h \in A^{2^n}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h^0_i and
2. h^1_i.

\[h \in A^{2^n} \]

\[h^0_3 \text{ and } h^1_3 \]
Take $h \in A^{2n}$. We consider h as a vertex labeled n-dimensional hypercube. For any coordinate $i \in n$, there are two $(n - 1)$-dimensional vertex labeled hyperfaces that are perpendicular to i, which we denote

1. h_i^0 and
2. h_i^1.
For $R \subseteq A^{2^n}$, set

$$R_i = \{ \langle h_i^0, h_i^1 \rangle : h \in R \}.$$
For $R \subseteq A^{2^n}$, set

$$R_i = \{\langle h_i^0, h_i^1 \rangle : h \in R \}.$$

Fact: Suppose A is a member of a permutable variety, and take $(\theta_0, \ldots, \theta_{n-1}) \in \text{Con}(A)^n$. Then,

$$M(\theta_0, \ldots, \theta_{n-1})_i$$

is a congruence relation, for all $i \in n$.

For $R \subseteq A^{2^n}$, set

$$R_i = \{ \langle h^0_i, h^1_i \rangle : h \in R \}. $$

Fact: Suppose A is a member of a permutable variety, and take $(\theta_0, \ldots, \theta_{n-1}) \in \text{Con}(A)^n$. Then,

$$M(\theta_0, \ldots, \theta_{n-1})_i$$

is a congruence relation, for all $i \in n$.

This leads to a nice characterization of the commutator for permutable varieties.
Theorem (Binary Commutator)

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]\text{TC}$
2. $[xy, x] \in M(\alpha, \beta)$
3. $[a, y, a, x] \in M(\alpha, \beta)$ for some $a \in \mathbb{A}$
4. $[xy, b, b] \in M(\alpha, \beta)$ for some $b \in \mathbb{A}$.
Theorem (Binary Commutator)

Let \mathcal{V} be a permutative variety and let $A \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(A)$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_{TC}$
Theorem (Binary Commutator)

Let \mathcal{V} be a permutable variety and let $A \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(A)$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_{TC}$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$
Theorem (Binary Commutator)

Let \mathcal{V} be a permutable variety and let $\mathbb{A} \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_{TC}$
2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in M(\alpha, \beta)$ for some $a \in A$
Theorem (Binary Commutator)

Let \mathcal{V} be a permutative variety and let $A \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(A)$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_{TC}$
2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in M(\alpha, \beta)$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in M(\alpha, \beta)$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in M(\alpha, \beta)$ for some $b \in A$.
Let \(\mathcal{V} \) be a modular variety and let \(\mathbb{A} \in \mathcal{V} \). For \(\alpha, \beta \in \text{Con}(\mathbb{A}) \), define \(\Delta_{\alpha, \beta} \) to be the transitive closure of \(M(\alpha, \beta) \).

Fact: Both \((\Delta_{\alpha, \beta})_0 \) and \((\Delta_{\alpha, \beta})_1 \) are congruence relations.
Let \mathcal{V} be a modular variety and let $A \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(A)$, define $\Delta_{\alpha,\beta}$ to be the transitive closure of $M(\alpha, \beta)_0$.

Fact: Both $(\Delta_{\alpha,\beta})_0$ and $(\Delta_{\alpha,\beta})_1$ are congruence relations.
Let \mathcal{V} be a modular variety and let $A \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(A)$, define $\Delta_{\alpha,\beta}$ to be the transitive closure of $M(\alpha, \beta)_0$.

Fact: Both $(\Delta_{\alpha,\beta})_0$ and $(\Delta_{\alpha,\beta})_1$ are congruence relations.
Theorem (Binary Commutator)

Let \mathcal{V} be a modular variety and let $A \in \mathcal{V}$. For $\alpha, \beta \in \text{Con}(A)$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_{TC}$
2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha,\beta}$
3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha,\beta}$ for some $a \in A$
4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha,\beta}$ for some $b \in A$.
Theorem: Let \mathcal{V} be a permutable variety. Take $\theta_0, \theta_1, \theta_2 \in \text{Con}(A)$ for $A \in \mathcal{V}$. The following are equivalent:

(1) $\langle x, y \rangle \in [\theta_0, \theta_1, \theta_2]$

(2) $\frac{\begin{array}{c} x \\ \hline \end{array}}{\begin{array}{c} x \\ \hline \end{array}} \frac{\begin{array}{c} x \\ \hline \end{array}}{\begin{array}{c} y \\ \hline \end{array}} \in M(\theta_0, \theta_1, \theta_2)$

There exist elements of A such that

(3) $\frac{\begin{array}{c} b \\ \hline \end{array}}{\begin{array}{c} a \\ \hline \end{array}} \frac{\begin{array}{c} c \\ \hline \end{array}}{\begin{array}{c} y \\ \hline \end{array}} \in M(\theta_0, \theta_1, \theta_2)$

(4) $\frac{\begin{array}{c} d \\ \hline \end{array}}{\begin{array}{c} d \\ \hline \end{array}} \frac{\begin{array}{c} x \\ \hline \end{array}}{\begin{array}{c} y \\ \hline \end{array}} \in M(\theta_0, \theta_1, \theta_2)$

(5) $\frac{\begin{array}{c} h \\ \hline \end{array}}{\begin{array}{c} x \\ \hline \end{array}} \frac{\begin{array}{c} i \\ \hline \end{array}}{\begin{array}{c} y \\ \hline \end{array}} \in M(\theta_0, \theta_1, \theta_2)$
Theorem: Let \mathcal{V} be a modular variety. Take $\theta_0, \theta_1, \theta_2 \in \text{Con}(A)$ for $A \in \mathcal{V}$. The following are equivalent:

1. $\langle x, y \rangle \in [\theta_0, \theta_1, \theta_2]$

2. $\begin{array}{c} x \\ x \\ x \end{array} \in \Delta_{\theta_0, \theta_1, \theta_2}$

There exist elements of A such that

3. $\begin{array}{c} b \\ c \\ d \\ e \\ f \end{array} \in \Delta_{\theta_0, \theta_1, \theta_2}$

4. $\begin{array}{c} b \\ c \\ d \\ e \\ f \end{array} \in \Delta_{\theta_0, \theta_1, \theta_2}$

5. $\begin{array}{c} h \\ i \\ j \end{array} \in \Delta_{\theta_0, \theta_1, \theta_2}$
Definition
Let $R \subseteq A^{2^n}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.
Higher Dimensional Congruence Relations

Definition
Let $R \subseteq A^{2^n}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition
Let A be an algebra with underlying set A. Let $R \in A^{2^n}$ be an n-dimensional equivalence relation. R is called an n-dimensional congruence if R is preserved by the basic operations of A.
Higher Dimensional Congruence Relations

Definition
Let $R \subseteq A^{2^n}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition
Let A be an algebra with underlying set A. Let $R \in A^{2^n}$ be an n-dimensional equivalence relation. R is called an n-dimensional congruence if R is preserved by the basic operations of A.

- Fix $n \geq 1$. The collection of all n-dimensional congruences of an algebra A is an algebraic lattice, which we denote by $\text{Con}_n(A)$.
Higher Dimensional Congruence Relations

Definition
Let $R \subseteq A^{2^n}$ be an n-dimensional relation on some set A. R is called an n-dimensional equivalence relation if for all $i \in n$, each R_i is an equivalence relation.

Definition
Let \mathbb{A} be an algebra with underlying set A. Let $R \in A^{2^n}$ be an n-dimensional equivalence relation. R is called an n-dimensional congruence if R is preserved by the basic operations of \mathbb{A}.

- Fix $n \geq 1$. The collection of all n-dimensional congruences of an algebra \mathbb{A} is an algebraic lattice, which we denote by $\text{Con}_n(\mathbb{A})$.
- There are n distinct embeddings from $\text{Con}_1(\mathbb{A})$ into $\text{Con}_n(\mathbb{A})$.
\[\phi_2^0(\alpha) = \left\{ \begin{bmatrix} x & y \\ x & y \end{bmatrix} : \langle x, y \rangle \in \alpha \right\} \]
\(\phi_0^2(\alpha) = \left\{ \begin{bmatrix} x & y \\ x & y \end{bmatrix} : \langle x, y \rangle \in \alpha \right\} \)

\(\phi_1^2(\beta) = \left\{ \begin{bmatrix} x & x \\ y & y \end{bmatrix} : \langle x, y \rangle \in \beta \right\} \)
Define $\Delta_{\alpha,\beta} = \phi^0_2(\alpha) \lor \phi^1_2(\beta)$

$$\phi^0_2(\alpha) = \left\{ \begin{bmatrix} x & y \\ x & y \end{bmatrix} : \langle x, y \rangle \in \alpha \right\}$$

$$\phi^1_2(\beta) = \left\{ \begin{bmatrix} x & x \\ y & y \end{bmatrix} : \langle x, y \rangle \in \beta \right\}$$
Higher Dimensional Congruence Relations

- Fix a dimension n and take $i \in n$. For a pair $\langle x, y \rangle \in A^2$, let $\text{Cube}_i(\langle x, y \rangle) \in A^{2^n}$ be such that
Fix a dimension n and take $i \in n$. For a pair $\langle x, y \rangle \in A^2$, let $\text{Cube}_i(\langle x, y \rangle) \in A^{2^n}$ be such that

1. $(\text{Cube}_i(\langle x, y \rangle))_i^0$ is the $(n - 1)$-dimensional cube with each vertex labeled by x.

Fix a dimension n and take $i \in n$. For a pair $\langle x, y \rangle \in A^2$, let $\text{Cube}_i(\langle x, y \rangle) \in A^{2n}$ be such that

1. $(\text{Cube}_i(\langle x, y \rangle))_i^0$ is the $(n - 1)$-dimensional cube with each vertex labeled by x.

Higher Dimensional Congruence Relations
Higher Dimensional Congruence Relations

- Fix a dimension n and take $i \in n$. For a pair $\langle x, y \rangle \in A^2$, let $\text{Cube}_i(\langle x, y \rangle) \in A^{2^n}$ be such that
 1. $(\text{Cube}_i(\langle x, y \rangle))^0_i$ is the $(n - 1)$-dimensional cube with each vertex labeled by x.
 2. $(\text{Cube}_i(\langle x, y \rangle))^1_i$ is the $(n - 1)$-dimensional cube with each vertex labeled by y.

- Define $\phi^i_n : \text{Con}_1(\mathbb{A}) \to \text{Con}_n(\mathbb{A})$ by
 $$\phi^i_n(\alpha) = \{\text{Cube}_i(\langle x, y \rangle) : \langle x, y \rangle \in \alpha\}$$
Define $\Delta_{\theta_0, \ldots, \theta_{n-1}} = \bigvee_i \phi_n^i(\theta_i)$
Characterizing Joins

Let \mathbb{A} be an algebra and let θ be an equivalence relation on \mathbb{A}. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of \mathbb{A}. This generalizes to:

Theorem

Let \mathbb{A} be an algebra and let $n \geq 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathbb{A}.
Characterizing Joins

Let \mathcal{A} be an algebra and let θ be an equivalence relation on \mathcal{A}. Then, θ is an admissible relation if and only if θ is compatible with the unary polynomials of \mathcal{A}.

This generalizes to:

Theorem

Let \mathcal{A} be an algebra and let $n \geq 1$. An n-dimensional equivalence relation θ is admissible if and only if θ is compatible with the n-ary polynomials of \mathcal{A}.
Proof Idea

Take $a_0, b_0, a_1, b_1, a_2, b_2, a_3, b_3, c_0, d_0, c_1, d_1, c_2, d_2, c_3, d_3 \in \theta$
Proof Idea

Take \(a_0 \rightarrow b_0 \rightarrow a_1 \rightarrow b_1 \rightarrow a_2 \rightarrow b_2 \rightarrow a_3 \rightarrow b_3 \quad \in \theta \quad \)

Then,

\(c_0 \rightarrow d_0 \rightarrow c_1 \rightarrow d_1 \rightarrow c_2 \rightarrow d_2 \rightarrow c_3 \rightarrow d_3 \rightarrow \in \theta \)
Proof Idea

Take \(a_0 \longrightarrow b_0 \longrightarrow a_1 \longrightarrow b_1 \longrightarrow a_2 \longrightarrow b_2 \longrightarrow a_3 \longrightarrow b_3 \), \(c_0 \longrightarrow d_0 \), \(c_1 \longrightarrow d_1 \), \(c_2 \longrightarrow d_2 \), \(c_3 \longrightarrow d_3 \) \(\in \theta \) Then, \(a_1 \longrightarrow a_1 \longrightarrow b_1 \longrightarrow b_1 \longrightarrow b_1 \), \(a_1 \longrightarrow a_1 \longrightarrow b_1 \longrightarrow b_1 \longrightarrow b_1 \), \(c_1 \longrightarrow c_1 \longrightarrow d_1 \longrightarrow d_1 \longrightarrow d_1 \), \(c_1 \longrightarrow c_1 \longrightarrow d_1 \longrightarrow d_1 \longrightarrow d_1 \), \(\in \theta \) Compatibility with binary polynomials is sufficient to show compatibility with a 4-ary operation.
Characterizing Joins

\[\Delta_{\theta_0, \ldots, \theta_{n-1}} = \bigvee_i \phi^i_n(\theta_i) \]
is therefore obtained by

1. Closing \(\bigcup \phi^i_n(\theta_i) \) under all \(n \)-ary polynomials and then

\[M(\theta_0, \ldots, \theta_{n-1}) \leq \Delta_{\theta_0, \ldots, \theta_{n-1}} \]. We use this larger collection to define a stronger term condition.
Characterizing Joins

\[\Delta_{\theta_0, \ldots, \theta_{n-1}} = \bigvee_i \phi^i_n(\theta_i) \]
is therefore obtained by

1. Closing \(\bigcup \phi^i_n(\theta_i) \) under all \(n \)-ary polynomials and then
2. taking a sequence of transitive closures, cycling through all
 possible directions possibly \(\omega \)-many times.

Notice: \(M(\theta_0, \ldots, \theta_{n-1}) \leq \Delta_{\theta_0, \ldots, \theta_{n-1}} \). We use this larger
 collection to define a stronger term condition.
Hypercentrality

For $\delta \in \text{Con}(\mathbb{A})$ we have that α hypercentralizes β modulo δ if the implication holds for all members of $\Delta_{\alpha,\beta}$. This condition is abbreviated $C_H(\alpha, \beta; \delta)$.
Similarly, we have that β hypercentralizes α modulo δ if the implication

$$\alpha \rightarrow \beta$$

holds for all members of $\Delta_{\alpha,\beta}$. This condition is abbreviated $C_H(\beta, \alpha; \delta)$.
Hypercentrality

- For congruences θ_0, θ_1 we set

$$[\theta_0, \theta_1]_H = \bigwedge \{\delta : C_H(\theta_0, \theta_1; \delta)\}$$
Hypercentrality

- For congruences θ_0, θ_1 we set

$$[\theta_0, \theta_1]_H = \bigwedge\{\delta : C_H(\theta_0, \theta_1; \delta)\}$$

- Higher arity hypercentrality and the higher arity hypercommutator similarly defined.
Theorem (Binary Hyper Commutator)

Let \mathbb{A} be an algebra. For $\alpha, \beta \in \text{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_H$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha, \beta}$

3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $a \in A$

4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha, \beta}$ for some $b \in A$.

A similar characterization of the higher arity hyper commutator also holds.
Theorem (Binary Hyper Commutator)

Let \mathbb{A} be an algebra. For $\alpha, \beta \in \text{Con}(\mathbb{A})$, the following are equivalent:

1. $\langle x, y \rangle \in [\alpha, \beta]_H$

2. $\begin{bmatrix} x & y \\ x & x \end{bmatrix} \in \Delta_{\alpha,\beta}$

3. $\begin{bmatrix} a & y \\ a & x \end{bmatrix} \in \Delta_{\alpha,\beta}$ for some $a \in A$

4. $\begin{bmatrix} x & y \\ b & b \end{bmatrix} \in \Delta_{\alpha,\beta}$ for some $b \in A$.

- A similar characterization of the higher arity hyper commutator also holds.
Supernilpotent Taylor Algebras Are Nilpotent

Strategy:
1. From the definitions, it follows that
\[
\theta_0, \ldots, \theta_{n-1} \leq \theta_0, \ldots, \theta_{n-1}
\]
2. Demonstrate the commutator nesting property for the hyper commutator:
\[
[\theta_0, \ldots, \theta_{i-1}, \theta_i, \ldots, \theta_{n-1}]_H \leq \theta_0, \ldots, \theta_{n-1}
\]
3. Show that \([\theta, \ldots, \theta]_S = [\theta, \ldots, \theta]_H\) in a Taylor variety.
4. (2) and (3) imply that
\[
[\theta, \ldots, \theta]_T, \theta, \ldots, \theta \leq [\theta, \ldots, \theta]_H \leq [\theta, \ldots, \theta]_T
\]
Supernilpotent Taylor Algebras Are Nilpotent

Strategy:

1. From the definitions, it follows that $\theta_0, \ldots, \theta_{n-1} \text{TC} \leq \theta_0, \ldots, \theta_{n-1} \text{H}

2. Demonstrate the commutator nesting property for the hyper commutator:
 \[
 \left[\theta_0, \ldots, \theta_{i-1}\right] \text{H}, \theta_i, \ldots, \theta_{n-1} \text{H} \leq \theta_0, \ldots, \theta_{n-1} \text{H}
 \]

3. Show that $\theta, \ldots, \theta \text{S} = \theta, \ldots, \theta \text{H}$ in a Taylor variety.

4. (2) and (3) imply that $\left[\theta, \ldots, \theta \text{TC}, \theta, \ldots, \theta \text{TC}\right] = \left[\theta, \ldots, \theta \text{H}, \theta, \ldots, \theta \text{H}\right] \leq \theta, \ldots, \theta \text{H} = \theta, \ldots, \theta \text{TC}$
Supernilpotent Taylor Algebras Are Nilpotent

Strategy:

1. From the definitions, it follows that

\[
\left[\theta_0, \ldots, \theta_{n-1} \right]_{TC} \leq \left[\theta_0, \ldots, \theta_{n-1} \right]_H
\]
Supernilpotent Taylor Algebras Are Nilpotent

Strategy:

1. From the definitions, it follows that

\[[\theta_0, \ldots, \theta_{n-1}]_{TC} \leq [\theta_0, \ldots, \theta_{n-1}]_H\]

2. Demonstrate the **commutator nesting property** for the hyper commutator:

\[[[\theta_0, \ldots, \theta_{i-1}]_H, \theta_i, \ldots, \theta_{n-1}]_H \leq [\theta_0, \ldots, \theta_{n-1}]_H\]
Supernilpotent Taylor Algebras Are Nilpotent

Strategy:

1. From the definitions, it follows that

\[[\theta_0, \ldots, \theta_{n-1}]_{TC} \leq [\theta_0, \ldots, \theta_{n-1}]_H\]

2. Demonstrate the **commutator nesting property** for the hyper commutator:

\[[[\theta_0, \ldots, \theta_{i-1}]_H, \theta_i, \ldots, \theta_{n-1}]_H \leq [\theta_0, \ldots, \theta_{n-1}]_H\]

3. Show that \([\theta, \ldots, \theta]_S = [\theta, \ldots, \theta]_H\) in a Taylor variety.
Supernilpotent Taylor Algebras Are Nilpotent

Strategy:

1. From the definitions, it follows that

\[[\theta_0, \ldots, \theta_{n-1}]_{TC} \leq [\theta_0, \ldots, \theta_{n-1}]_H\]

2. Demonstrate the **commutator nesting property** for the hyper commutator:

\[[[\theta_0, \ldots, \theta_{i-1}]_H, \theta_i, \ldots, \theta_{n-1}]_H \leq [\theta_0, \ldots, \theta_{n-1}]_H\]

3. Show that \([\theta, \ldots, \theta]_S = [\theta, \ldots, \theta]_H\) in a Taylor variety.

4. (2) and (3) imply that

\[[[\theta, \ldots, \theta]_{TC}, \theta, \ldots, \theta]_{TC} = [[[\theta, \ldots, \theta]_H, \theta, \ldots, \theta]_H \leq [\theta, \ldots, \theta]_H = [\theta, \ldots, \theta]_{TC}\]
Supernilpotent \nRightarrow Nilpotent (work with Moore)
Supernilpotent \iff Nilpotent (work with Moore)

Define $A = O \cup R \cup G$ with G infinite, $O = \{o^i_j : i, j \in \omega\}$, and $R = \{r^i_j : i, j \in \omega\}$.
Supernilpotent $\not\iff$ Nilpotent (work with Moore)

Define $A = O \cup R \cup G$ with G infinite, $O = \{o^i_j : i, j \in \omega\}$, and $R = \{r^i_j : i, j \in \omega\}$. Let $A = \langle A; t \rangle$ be the algebra with underlying set A and a binary operation t with the table
Supernilpotent \iff Nilpotent (work with Moore)

Define $A = O \cup R \cup G$ with G infinite, $O = \{o^i_j : i, j \in \omega\}$, and $R = \{r^i_j : i, j \in \omega\}$. Let $A = \langle A; t \rangle$ be the algebra with underlying set A and a binary operation t with the table

where t an injection into G otherwise.
Supernilpotent $\not\Rightarrow$ Nilpotent

- \mathbb{A} is not solvable and hence not nilpotent.

Question: Let \mathbb{V} be a chapter in the lattice of interpretability of types that does not lie above Olšák's variety. Is there a variety $\mathbb{W} \in \mathbb{V}$ with a supernilpotent algebra that is not nilpotent?
Supernilpotent \iff Nilpotent

- \mathbb{A} is not solvable and hence not nilpotent.
- \mathbb{A} is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{align*}
 &a & b \\
 &c & e \\
 &a & b \\
 &c & d
\end{align*} \in M(1,1,1)$$

implies $e = d$.

This example generalizes to 'higher dimensions.' There exist algebras \mathbb{A}_n that

1. are not solvable in dimension n (no term in commutators up to arity n evaluated at 1 produces 0)
2. but are n-step supernilpotent.

Question: Let $[\mathbb{V}]$ be a chapter in the lattice of interpretability of types that does not lie above Olšák's variety. Is there a variety $\mathbb{W} \in [\mathbb{V}]$ with a supernilpotent algebra that is not nilpotent?
Supernilpotent \nrightarrow Nilpotent

- \mathbb{A} is not solvable and hence not nilpotent.
- \mathbb{A} is 2-step supernilpotent. To prove this it suffices to show that

\[
\begin{align*}
 h &= \begin{array}{c}
 a \\
 c \\
 a
\end{array}
\begin{array}{c}
 b \\
 \cdots \\
 b \\
 a
\end{array}
\begin{array}{c}
 c \\
 e
\end{array}
\begin{array}{c}
 d
\end{array}
\end{align*}
\]

implies $e = d$.

- This example generalizes to ‘higher dimensions.’ There exist algebras \mathbb{A}_n that

1. are not solvable in dimension n (no term in commutators up to arity n evaluated at 1 produces 0)
2. but are n-step supernilpotent.

Question: Let $[V]$ be a chapter in the lattice of interpretability of types that does not lie above Ol’šák’s variety. Is there a variety $W \in [V]$ with a supernilpotent algebra that is not nilpotent?
Supernilpotent \iff Nilpotent

- \mathbb{A} is not solvable and hence not nilpotent.
- \mathbb{A} is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{array}{ccc}
 a & b \\
 c & \quad & e \\
 \quad & b & \quad \\
 \quad & \quad & d
\end{array} \in M(1, 1, 1)$$

implies $e = d$.

- This example generalizes to ‘higher dimensions.’ There exist algebras \mathbb{A}_n that
 1. are not **solvable in dimension** n (no term in commutators up to arity n evaluated at 1 produces 0)
Supernilpotent $\not\rightarrow$ Nilpotent

- \mathbb{A} is not solvable and hence not nilpotent.
- \mathbb{A} is 2-step supernilpotent. To prove this it suffices to show that

\[
\begin{array}{c}
\text{a} \\
\text{\quad c} \\
\text{\quad b}
\end{array}
\quad \begin{array}{c}
\text{\quad e} \\
\text{\quad d}
\end{array}
\quad \in \ M(1, 1, 1)
\]

implies $e = d$.

- This example generalizes to ‘higher dimensions.’ There exist algebras \mathbb{A}_n that
 1. are not **solvable in dimension** n (no term in commutators up to arity n evaluated at 1 produces 0)
 2. but are n-step supernilpotent.

Question: Let $[V]$ be a chapter in the lattice of interpretability of types that does not lie above Olšák’s variety. Is there a variety $W \in [V]$ with a supernilpotent algebra that is not nilpotent?
Supernilpotent \iff Nilpotent

- \mathbb{A} is not solvable and hence not nilpotent.
- \mathbb{A} is 2-step supernilpotent. To prove this it suffices to show that

$$h = \begin{array}{ccc}
 a & b \\
 \ \ \ \\ \\
 c & e \\
 \ \ \ \\
 a & b \ \\
 \ \ \\
 c & d \\
\end{array} \in M(1,1,1)$$

implies $e = d$.

- This example generalizes to ‘higher dimensions.’ There exist algebras \mathbb{A}_n that
 1. are not **solvable in dimension** n (no term in commutators up to arity n evaluated at 1 produces 0)
 2. but are n-step supernilpotent.

- **Question:** Let $[\mathcal{V}]$ be a chapter in the lattice of interpretability of types that does not lie above Olšák’s variety. Is there a variety $\mathcal{W} \in [\mathcal{V}]$ with a supernilpotent algebra that is not nilpotent?
Thank you for attending this presentation.
Thank you for attending this presentation. Thank you organizers!