Section I: Some fact about Boolean rings

1. A ring R is called Boolean if $x^2 = x$ for all $x \in R$. Prove that if R is a Boolean ring, then R is commutative. Need a Boolean ring have a 1? Can a Boolean ring be an integral domain?

2. Prove that in a Boolean ring every prime ideal is a maximal ideal.

3. Let R be a Boolean ring and $I \subseteq R$ an ideal. Define a function $f : R \to \mathbb{Z}_2$ by $f(x) = 0$ iff $x \in I$ and $f(x) = 1$ otherwise. Prove that f is a ring homomorphism iff I is a prime ideal.

Section II: Zorn’s lemma and its applications

Let (P, \leq) be a partially-ordered set. A subset $C \subseteq P$ is called a chain if for each $x, y \in P$ we have that $x \leq y$ or $y \leq x$. Zorn’s lemma states that if each chain contained in P has an upper bound in P, then P has a maximal element (see Appendix I of Dummit and Foote for general information, and the proof of Proposition 11 on p. 254 for a typical application). This has a huge number of applications in ring theory, a few of which we sketch below.

4. Let $A = (a_1, a_2, ..., a_n)$ be a nonzero finitely generated ideal of the ring R. Prove that there is an ideal B which is maximal with respect to the property that it does not contain A.

5. Let R be a commutative ring. Prove that the set of prime ideals in R has a minimal element with respect to inclusion (possibly the zero ideal).

6. Let S be a multiplicatively closed subset of a commutative ring R such that $0 \notin S$. Prove that there is an ideal I that is maximal with respect to the condition that $I \cap S = \emptyset$.